SPILL PREVENTION, CONTROL, AND COUNTERMEASURES PLAN
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VA

Prepared by:
Aegis Environmental, Inc.
11511 Allecingie Parkway
Richmond, VA 23235

Prepared for:
Facilities Management – Environmental Resources
University of Virginia
P.O. Box 400726
Charlottesville, VA 22904-4322

Contact: Kristin Carter, PE
434-982-5034

August 7, 2019
By UVA Environmental Resources Staff and Aegis Environmental, Inc.

Note: As required by the U.S. Environmental Protection Agency in 40 CFR Part 112, this document has been revised by the Environmental Resources group within the University of Virginia's Facilities Management department to reflect the changes in the SPCC regulations and changes in UVA equipment.
Upon examination of the University of Virginia main campus in Charlottesville, Virginia, and review of this spill prevention, control, and countermeasures plan as required in 40 CFR 112, Environmental Protection Agency Regulations on Oil Pollution Prevention, I certify that:

i. That I am familiar with the requirements of this regulation;
ii. That I or one of my agents has visited and examined the facility;
iii. That the Plan has been prepared in accordance with good engineering practice; including consideration of applicable industry standards, and with the requirements of this part;
iv. That procedures for required inspections and testing have been established; and
v. That the Plan is adequate for the facility.

_____________________________ ___8/7/2019_______________
Signature Date
Lori Bonds, P.E.
Amendments Requiring P.E. Certification

<table>
<thead>
<tr>
<th>Type of Amendment</th>
<th>PE Certification Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>New, reconstruction or removal of tanks.</td>
<td>YES</td>
</tr>
<tr>
<td>Secondary containment changes (physical).</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to loading/unloading procedures.</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to drainage system.</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to Site Plan.</td>
<td>YES</td>
</tr>
<tr>
<td>Reconstruction, replacement or installation of piping</td>
<td>YES</td>
</tr>
<tr>
<td>Changes of product or service.</td>
<td>YES</td>
</tr>
<tr>
<td>Revision of standard operating procedures.</td>
<td>YES</td>
</tr>
<tr>
<td>Revision of inspection methods or frequency.</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to contact list - name change only.</td>
<td>NO</td>
</tr>
<tr>
<td>Revision of training materials.</td>
<td>NO</td>
</tr>
<tr>
<td>Revision of training frequency.</td>
<td>YES</td>
</tr>
<tr>
<td>Revision of security measures.</td>
<td>YES</td>
</tr>
<tr>
<td>Editing - correction of typographical errors.</td>
<td>NO</td>
</tr>
<tr>
<td>Editing - revision of wording for clarification.</td>
<td>NO</td>
</tr>
</tbody>
</table>
Management Approval
[40 CFR 112.7]

The University of Virginia is committed to the prevention of discharges of oil to navigable waters and the environment, and maintains the highest standards for spill prevention, control, and countermeasures through regular review, updating, and implementation of this Spill Prevention, Control, and Countermeasures Plan for the University of Virginia main campus in Charlottesville, Virginia.

Name: Colette Sheehy

Title: Senior Vice President for Operations

Signature

Date 08.19.19
Spill Prevention, Control, and Countermeasure Plan
University of Virginia – Charlottesville, VA

Certification of Substantial Harm Determination Form

FACILITY NAME: University of Virginia

FACILITY ADDRESS:
Environmental Resources
Facilities Management
P.O. Box 400726
University of Virginia
Charlottesville, VA 22904-4726

Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons? □ Yes □ No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and, within any storage area, does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage container plus sufficient freeboard to allow for precipitation? □ Yes □ No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Part 112, Appendix D or a comparable formula) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? □ Yes □ No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Appendix D or a comparable formula) such that a discharge from the facility would shut down a public drinking water intake? □ Yes □ No

Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil discharge in an amount greater than or equal to 10,000 gallons within the last 5 years? □ Yes □ No

__ ____________
Signature Date

Colette Sheehy
Name (Please type or print)

Senior Vice President for Operations
Title
Table of Contents

1.0 INTRODUCTION .. 8
 1.1 Regulatory Requirements.. 8
 1.2 Purpose and Organization... 9

2.0 PLAN REVIEW AND AMENDMENT PROCEDURES .. 10
 2.1 U.S. EPA Required Review and Amendments ... 10
 2.2 Modification Review and Amendments .. 10
 2.3 Five Year Review and Amendments .. 11

3.0 OWNER AND OPERATOR ... 12

4.0 FACILITY LAYOUT ... 13

5.0 SITE DESCRIPTION .. 14
 5.1 Operations.. 14
 5.2 Oil Storage Inventory ... 14

6.0 SPILL RESPONSE ACTIONS ... 15
 6.1 General Response ... 15
 6.2 Internal Notification – Initial Response .. 15
 6.3 Disposal of Spilled Material .. 16

7.0 EXTERNAL ALERT PROCEDURES .. 19
 7.1 UVA Personnel... 19
 7.2 Regulatory Notifications ... 19
 7.3 Notification of Release Content .. 20
 7.4 Written Reports to EPA and VA DEQ.. 20

8.0 SPILL CONTROL EQUIPMENT ... 22

9.0 DRAINAGE PATHWAY AND DISTANCE TO NAVIGABLE WATERS 23

10.0 POTENTIAL SPILL PREDICTIONS, VOLUMES, RATES, AND CONTROL 24

11.0 DRAINAGE CONTROL AND CONTAINMENT ... 25

12.0 IMPRACTICABILITY OF SECONDARY CONTAINMENT ... 26

13.0 INSPECTIONS/RECORDKEEPING ... 27

14.0 PERSONNEL TRAINING AND SPILL PREVENTION PROCEDURES 29
 14.1 Personnel Instructions .. 29
 14.2 Designation of Responsibility .. 29
 14.3 Spill Prevention Briefings .. 31

15.0 SECURITY ... 32
 15.1 Fences and Locks .. 32
15.2 Flow Valves Locked .. 32
15.3 Starter Controls Locked .. 32
15.4 Lighting Adequate to Detect Spills ... 32
16.0 OTHER MORE STRINGENT PREVENTION STANDARDS ... 33
17.0 DRAINAGE CONTROL ... 34
 17.1 Drainage from Areas with Secondary Containment ... 34
 17.2 Drain Valves ... 34
18.0 BULK STORAGE CONTAINERS ... 35
 18.1 Tank Compatibility with its Contents ... 35
 18.2 Secondary Containment for Bulk Storage Tanks ... 35
 18.3 Corrosion Protection of Buried Metallic Storage Tanks ... 35
 18.4 Aboveground Tank Periodic Integrity Testing and Periodic Inspections 35
 18.5 Tank Installation Fail-Safe Engineered ... 37
 18.6 Visible Oil Leaks Corrected ... 37
 18.7 Appropriate Position of Mobile or Portable Oil Storage Tanks .. 37
19.0 FACILITY TRANSFER OPERATIONS ... 38
 19.1 Buried Piping Cathodic Protection and Examination ... 38
 19.2 Not-In-Service and Standby Service Terminal Connections ... 38
 19.3 Pipe Supports Design .. 38
 19.4 Aboveground Valve and Pipeline Examination ... 38
 19.5 Aboveground Piping Vehicular Traffic Protection .. 38
20.0 SPCC REQUIREMENTS FOR ANIMAL AND VEGETABLE FATS AND OILS..... 39
List of Figures
Figure 1 – Facility Location and Index Map

List of Tables
Table 1 – Internal Notification Personnel
Table 2 – Internal Emergency Contacts
Table 3 – Inspection Schedule for Oil Containers at UVA
Table 4 – AST’s With Capacities Greater Than 5,000 Gallons

Appendices
A – Federal and State Oil Regulations
 CFR Title 40, Chapter 1, Subchapter D, Part 112
 9VAC25-91, Facility and AST Regulations
 9VAC25-580, Underground Storage Regulations
B – University Area Maps
C – Oil Storage Inventory
D – Equipment Maps (ASTs, DSTs, USTs)
E – Potential Equipment Failure Summary
F – SPCC Cross-Reference Checklist
G – Inspection Checklists
H – Spill History
I – Record of Revisions
J – Emergency Response Contact List
1.0 INTRODUCTION

[40 CFR 112.1, 112.3]

The Code of Federal Regulations (CFR), Title 40, Part 112 (40 CFR 112) requires spill prevention, control, and countermeasures (SPCC) plans to be implemented by organizations that conduct operations involving the storage, transfer, or consumption of oil or oil products. The University of Virginia (UVA) main campus and proximate locations in Charlottesville, Virginia are subject to these requirements.

1.1 Regulatory Requirements

40 CFR 112.1 and 40 CFR 112.3 requires development of SPCC plans for certain organizations with the potential for discharge of oil into or upon navigable waters of the United States. Because UVA stores oil products (heating fuel oil, diesel, gasoline, waste oil, transformer oil, etc.) in aggregate greater than 1,320 gallons above-ground capacity and additionally the completely buried oil storage capacity is greater than 42,000 gallons, 40 CFR 112 is applicable. The SPCC plan is an engineering and management strategy designed to prevent UVA from discharging oil products that may impact the quality of navigable waters or adjoining shorelines. Because UVA has a total aboveground oil storage capacity of more than 10,000 gallons and has individual aboveground oil containers greater than 10,000 gallons, UVA’s SPCC plan must be certified by a Professional Engineer (PE). UVA’s SPCC Plan is prepared in accordance with good engineering practices and has the full approval of UVA management at a level with authority to commit the necessary resources to ensure plan implementation. This plan will be updated and re-certified every five years. Appendix A contains a copy of the relevant federal SPCC regulations found in 40 CFR 112.

The following is a summary of 40 CFR 112 sections applicable to UVA and the status of compliance with these at the time of this most recent revision.

- Petroleum storage tanks, containers, and pipelines are compatible with the material stored and are periodically tested and/or inspected.
- Above-ground bulk petroleum storage containers (ASTs) of 55-gallons or greater have secondary containment provided for the volume of the AST plus sufficient volume for precipitation, if required.
- AST valves and pipelines are subject to regular examinations by operating personnel.
- New underground metallic storage tanks and pipelines, including those for heating oil tanks, will have corrosion protection; overfill prevention devices, and adequate pipe supports.
- Storage tanks and pipelines have provisions for traffic protection.
- UVA has implemented security measures.
- UVA personnel who work with oil products are instructed and briefed on proper spill prevention and response procedures on an annual basis.
1.2 Purpose and Organization

The purpose of the SPCC plan is to establish procedures, methods, equipment, and other criteria to prevent the discharge of oil products from non-transportation-related onshore and offshore facilities into or upon navigable waters of the United States or adjoining shorelines.

The SPCC plan will address the following:

• Existing oil-containing devices at UVA and proximate locations in Charlottesville, Virginia with a potential for a spill of oil products.
• Existing containment and diversionary structures constructed to control spill occurrences.
• Actions required and designated responsibilities to achieve compliance with SPCC requirements.

This plan is organized by key elements required in an SPCC plan. Where applicable, regulatory requirements listed in 40 CFR 112 are cited in the section heading.
2.0 PLAN REVIEW AND AMENDMENT PROCEDURES
[40 CFR 112.4, 112.5]

UVA will amend the SPCC plan:

- When required by the U.S. EPA Regional Administrator after review of the SPCC plan submitted because of a spill;
- Whenever there is a change in design, construction, operations, or maintenance which materially affects the potential for an oil spill; or
- If the required five-year review of the plan indicates more effective control and prevention technology will significantly reduce the likelihood of a spill (if such technology has been field proven).

All SPCC plan technical amendments will be certified by a registered professional engineer. The SPCC program manager will keep a copy of all amendments to this plan and will note such amendments.

2.1 U.S. EPA Required Review and Amendments

UVA will submit the SPCC plan with any amendments, as required, to the U.S. EPA and to the Virginia Department of Environmental Quality whenever:

- A single discharge event results in a 1,000 gallon or more oil discharge; or
- Two discharge events resulting in oil discharges of 42 gallons or more each within a 12-month period.

Within 60 days of the occurrence of either of these two conditions, UVA will submit a report to the U.S. EPA Regional Administrator. A complete copy of all information provided to U.S. EPA also will be sent at the same time to the Virginia Department of Environmental Quality; which they may review and make recommendations to the U.S. EPA to prevent and to contain discharges of oil from UVA. The U.S. EPA will review the information and any recommendations made by Virginia Department of Environmental Quality. The U.S. EPA may also require UVA to amend the SPCC plan.

When the U.S. EPA proposes to amend the SPCC plan, UVA will be notified by certified mail or by personal delivery. The U.S. EPA will specify the terms of such amendment. Within 30 days from receipt of this notice, UVA may submit written information, views, and arguments on the proposed amendment. After considering all material presented, the U.S. EPA will notify UVA of the amendment required or will rescind the notice. The amendment required becomes a part of the SPCC plan 30 days after such notice, unless UVA appeals. The amendment will be implemented no later than six months after the amendment becomes a part of the SPCC plan.

2.2 Modification Review and Amendments

Whenever there is a change in design, construction, operations, or maintenance that may materially affect the potential for an oil spill, UVA personnel will notify the SPCC program manager, who may amend this SPCC plan to reflect such a change if necessary. This
change could be either the result of construction of a new structure or modifications to an existing structure.

As specified, the SPCC program manager is responsible for reviewing all plans for new construction, maintenance or remodeling to determine if an amendment of the SPCC plan is required. If the plan must be amended, the SPCC program manager is responsible for having it amended and seeing that the amendments are implemented as soon as possible, but no later than six months after the change in design, construction, operations, or maintenance occurred.

2.3 Five Year Review and Amendments

UVA will review and evaluate the SPCC plan at least once every five years. This review will include an assessment of new technology that has become available for the prevention of spills since the plan was last reviewed. In addition, UVA will verify conformance with the SPCC plan requirements and the fact that past recommendations have been implemented. As a result of this review and evaluation, the SPCC plan will be amended within six months to include more effective prevention and control technology if the technology will significantly reduce the likelihood of a spill and if the technology has been field proven at the time of the review. The SPCC program manager is responsible for seeing that this plan is reviewed for applicability of new technology at least every five years. For all technical amendments, a licensed professional engineer will certify that the plan has been reviewed in accordance with applicable spill regulations and best management practices.
3.0 OWNER AND OPERATOR

Owner: Commonwealth of Virginia
Operator: Board of Visitors, University of Virginia
Point of Contact: SPCC Manager

Ms. Kristin Carter, SPCC Manager
Environmental Resources
Facilities Management
University of Virginia
575 Alderman Road
P.O. Box 400726
Charlottesville, VA 22904-4726

Telephone: 434-982-5034
4.0 FACILITY LAYOUT
[40 CFR 112.7 (a)(3)]

Figure 1 is a site location map of UVA Campus and the Charlottesville area. This figure shows the UVA Campus. More detailed site maps are located in Appendix B which show the locations of all applicable oil containers and equipment. Specifics such as capacity and type of oil stored for each of the containers can be found in the tables in Appendices C and E. Appendix D contains site specific maps for ASTs showing likely surface flow release directions.
5.0 SITE DESCRIPTION
[40 CFR 112.7 (a)(3)]

UVA operates its main campus and proximate locations in the western portion of the City of Charlottesville, Virginia and a portion of Albemarle County. UVA’s SIC code is 8221 (colleges, universities, etc.).

For the purpose of this SPCC plan, the main campus and proximate locations have been divided into the following areas with representative maps located in Appendix B:

- North Grounds
- West Grounds
- Central Grounds
- Fontaine Research Park
- Northridge Medical Campus

5.1 Operations

The ASTs and USTs on campus are used primarily to provide fuel for heating and fuel for backup power to various UVA facilities. (USTs include buried heating oil storage tanks that do not meet the Federal or State definition of UST and are therefore not regulated by those UST regulations.) Several USTs are used to provide fuel for UVA service and fleet vehicles. The pad- and pole-mounted transformers on campus are used to reduce electrical voltage from the power lines into the buildings that they serve. Only oil-containing transformers are included in this SPCC plan. All transformers identified in this plan are on pads, in vaults, or small secured rooms. Only hydraulic elevators operating on campus that contain at least 55 gallons of hydraulic fluid are included in this SPCC plan. Used cooking oil is generated and is stored on campus.

Some facilities such as University Hospital operate 24 hours per day, 7 days per week. Academic buildings are open throughout the year, depending on their use, and when classes are in session. Most administrative buildings are open during normal business hours throughout the year. UVA operates a police and security force 24 hours per day, 7 days per week.

The maps in Appendix B cover the UVA campus and depict all tanks, generators, transformers, drum storage areas, and buildings where hydraulically operated elevators are found.

5.2 Oil Storage Inventory

Tables C-1 through C-4 (Appendix C) summarize the oil storage inventory across UVA. As applicable, information provided in these tables include: location description, UVA ID number, map name, use, contents, capacity, and construction.
6.0 SPILL RESPONSE ACTIONS
[40 CFR 112.7 (a)(3)(iv) – (vi)]

UVA has developed a program for spill response. This section details actions that UVA will follow after the discovery of a spill. These actions are distinct from the SPCC maintenance responsibilities discussed in other sections. A spill history is maintained in Appendix H that includes spills that have occurred in the last five years.

6.1 General Response

As soon as a spill is discovered, the initial action should be to protect personal safety and prevent the pollutant from entering nearby drainage ditches or storm water drop inlets. The person observing the spill should take immediate action to prevent further spillage and to confine the spilled material. The general instructions to contain a spill are:

- If possible to do safely, stop the release. This includes shutting appropriate valves, securing pumps, and attempting to plug or cover punctures or gashes in pipes. It may be impossible to stop the spill if the situation creates a high degree of personal danger to the immediate responders.
- Notify a supervisor and the facility emergency coordinator.
- Warn other employees and onsite personnel of the spill by voice or using equipment such as two-way radios or telephones, if available.
- Contain the spill. Use absorbent materials, dirt, sand, or other relatively impervious material to dam up the spill and prevent further flow of the material from the spill area.
- Should spillage reach the drainage ditches or storm water drop inlets, use available means to minimize amount of substance flowing into the ditch or drain and contain the substance at the discharge point.
 - For oil or other floating materials, use hay, straw, or any boom arrangement to confine the spillage.
 - For soluble materials, use chemical absorbent, makeshift dams, or other means of confinement to prevent waterway contamination or the spread of further contamination.
- The person discovering the spill should not undertake burning or chemical treatment of the spill.

6.2 Internal Notification – Initial Response

After completing initial spill-containment actions, the individual discovering a spill must notify Environmental Health and Safety or the FM Service Desk, as shown in Table 1, as soon as possible. The discoverer should also notify their supervisor. Environmental Health and Safety or FM Service Desk staff are responsible for immediately notifying the SPCC Program Manager(s) of any spills. If warranted (e.g. after normal business hours, significant health/fire hazard), the Fire Department spill response team should be notified by calling 911.

Information to be provided in the notification includes:

- Location of spillage
- Type of material
• Estimated quantity and extent of spillage; and
• A brief description of measures that have been taken to confine the spilled material and prevent further spillage.

<table>
<thead>
<tr>
<th>Title</th>
<th>Office Phone</th>
<th>24-Hour Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Health and Safety – Spill Response</td>
<td>(434) 982-4911</td>
<td>(434) 982-4865</td>
</tr>
<tr>
<td>SPCC Program Manager (Kristin Carter)</td>
<td>(434) 982-5034</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td>SPCC Alternate Program Manager (Jess Wenger)</td>
<td>(434) 982-5540</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td>Fire Department – (immediate endangerment to surface water or health)</td>
<td>911</td>
<td>911</td>
</tr>
</tbody>
</table>

The SPCC program manager should make any required notifications to appropriate local, state, and federal agencies, as described in Section 7 of this plan. However, if conditions require immediate notification and efforts to contact the above personnel are unsuccessful, the supervisor or other onsite personnel should make the appropriate oral notifications in Section 7.2 within 30 minutes following the spill’s discovery. UVA’s emergency spill cleanup contractor may also have to be notified.

6.3 Disposal of Spilled Material

After containment is achieved, the spilled materials and the containment materials will be removed and placed in appropriate containers for proper disposal in accordance with the procedures below. UVA is not equipped to perform remedial activities for large quantities of contaminated spill materials and has contracted with a private company to provide this service. If regulatory agency personnel are present to control the remedial activities, UVA personnel shall perform such actions as required by the regulatory agency. The procedures for the removal and disposal of small quantities of contained oil products are outlined below.

6.3.1 Safety Precautions

Spilled oil products, due to their inherent physical characteristics, must be assumed to be hazardous. As such, personnel must take appropriate measures to prevent accidental ignition or detonation of any waste materials during spill remedial activities. The most prominent threat arises from external ignition sources, such as open flames, sparks, etc. The following safety guidelines are to be strictly enforced to ensure that accidental ignition does not result:

• Smoking will be prohibited within 100 feet of the spill-impacted area.
• Ignition sources shall be prohibited in the spill area.
• Spark-producing equipment and tools shall be prohibited from use near spilled materials or oil-contaminated materials, unless specifically authorized by the SPCC program manager.
• Motor vehicles used to transport any waste fuels, oil-contaminated materials, or any other potentially hazardous material found at the spill site shall meet all applicable U.S. Department of Transportation safety standards.
• No operations shall be conducted during electrical storms.

6.3.2 Free Product (Oil, Diesel, or Gasoline)

• Free product is to be collected by experienced or trained personnel.
• Dispersing materials or methods must never be used unless specifically authorized by the regulatory personnel.
• Free product shall be collected using absorbent materials. The absorbent shall be applied until all free liquids are retained.
• Free product may be stored in waste collection containers (tank or drums) until pickup for removal from the site by Environmental Health and Safety personnel. Storage time onsite should be kept within regulatory limits.
• Collected materials shall be transferred within areas equipped with secondary containment or in areas where temporary containment can prevent leaks or spills from escaping.
• Used absorbent shall be collected with non-spark-producing tools and placed in drums or pails, which shall be sealed upon filling. All containers shall be labeled OIL WASTE - FLAMMABLE.
• All containerized waste products shall be classified within the provisions of 40 CFR 261 and transported off-site within regulatory time constraints for reclamation/disposal at a treatment, storage and disposal facility licensed by the state.
• Appropriate manifests, disposal documentation, and written reports shall be maintained onsite for at least three years.

6.3.3 Contaminated Soils, Absorbents, Etc.

• Soils, absorbents, temporary dike materials, and other debris contaminated during the spill shall be collected with non-spark-producing tools and placed in drums or pails that must be sealed upon filling. All containers shall be labeled OIL WASTE - FLAMMABLE.
• Spill waste materials/debris may be disposed of in general trash containers as long as there are no free liquids and materials are not saturated.
• All containerized waste products shall be classified within the provisions of 40 CFR 261 and transported off-site within regulatory time constraints for reclamation/disposal at a treatment, storage and disposal facility licensed by the state.
• Appropriate manifests, disposal documentation, and written reports shall be maintained onsite for at least three years.
Environmental Health and Safety and/or the SPCC Program Manager will supervise, direct, and make arrangements for the removal and disposal of recovered fuel and related petroleum-contaminated materials. Environmental Health and Safety has the ultimate responsibility for the disposal of chemical wastes from the university. This is always completed using a permitted/licensed contract hauler and disposal company.
7.0 EXTERNAL ALERT PROCEDURES

UVA will implement a spill notification program for external spill notification. An Emergency Contact List is also located in Appendix J.

7.1 UVA Personnel

The Environmental Health and Safety Office or the FM Service Desk should be contacted as shown in Table 2 in order to ensure timely notification to the SPCC Program Manager. The SPCC Program Manager should be notified immediately so that they can in turn notify appropriate local, state, and federal agencies within 30 minutes after discovery of a reportable spill and notify any emergency response contractors as needed.

<table>
<thead>
<tr>
<th>Title/Department</th>
<th>Office Phone</th>
<th>24-Hour Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Health and Safety</td>
<td>(434) 982-4911</td>
<td>(434) 982-4865</td>
</tr>
<tr>
<td>FM Service Desk</td>
<td>(434) 924-1777</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td>SPCC Program Manager</td>
<td>(434) 982-5034</td>
<td>(434) 924-1777</td>
</tr>
</tbody>
</table>

7.2 Regulatory Notifications

The following agency notifications will be made by the Environmental Health and Safety or the SPCC program manager as required:

1. **UVA/Local Protection Agencies**
 If danger to the public health or safety exists, immediately notify the following:

 University of Virginia Police Department - 911
 Fire Department - 911

2. **Federal/State/Local Agencies**
 Environmental regulations require immediate notification to the Virginia Department of Environmental Quality (DEQ), local emergency services, and appropriate Federal authorities of any discharge of any oil to State waters, lands, or storm drain systems within the Commonwealth. Under Virginia law, notice will be deemed to have been given for any discharge of oil in amounts less than 25 gallons, as long as oil does not reach a waterway, records are maintained for a period of five years, and the oil has been cleaned up in accordance with applicable statutory requirements. Virginia DEQ should be notified immediately upon a release of any amount from an underground or buried tank into the soil.
EPA requires an immediate notification to the National Response Center (NRC) whenever a discharge of oil:

- Causes a sheen on a waterway or shoreline,
- Causes a sludge or emulsion beneath the surface of a waterway or shoreline, or
- Violates a water quality standard.

Local Emergency Services Coordinator - 911
National Response Center (NRC)/U.S. Coast Guard - (800) 424-8802
Virginia Emergency Operations Center (24-hour hotline) - (800) 468-8892
VDEQ Valley Regional Office (during normal business hours) - (540) 574-7800

3. In the event of a fire or health hazard, or response beyond the capability of UVA personnel, the emergency response coordinator will notify:

Fire Department - 911
Outside Emergency Response Contractor:
HEPACO (800) 888-7689

4. If leakage into the sanitary sewer is known to have happened, will happen, or is suspected, notify the following:

Rivanna Water and Sewer Authority - (434) 295-2306
Charlottesville Water and Sewer - (434) 970-3820
Albemarle County Service Authority - (434) 977-4511

7.3 Notification of Release Content

The information to be relayed to the contacted agencies includes:

- Name of person reporting.
- Address or location of where spill occurred.
- Substance spilled.
- Estimated quantity.
- Time spill occurred.
- Person to contact and telephone number at UVA.

7.4 Written Reports to EPA and VA DEQ

All environmental oil spills that result in any of the following require submission of a written report to EPA’s Regional Administrator and may require amendment to this SPCC Plan:

- 1,000 gallons or more discharged in one spill event; or
- 42 gallons or more discharged in two spill events each within a 12 month period.

After oral notification to the various agencies and personnel (see Section 7.2), a written report must be issued containing pertinent details relating to the cause of spillage,
Spill Prevention, Control, and Countermeasure Plan
University of Virginia – Charlottesville Virginia

corrective actions taken, final results of corrective actions, and proposed plans to prevent recurrence of the problem. The written report will be filed within 60 days by the SPCC program manager to the following:

- U.S. Environmental Protection Agency, Regional Administrator, U.S. EPA
 Region III 841 Chestnut Building, Philadelphia, Pennsylvania 19107-4431

- Virginia Department of Environmental Quality, Petroleum Compliance Advisor,
 P.O. Box 3000, Harrisonburg, Virginia 22801-9519

The report should include the following information:

- Name of area where spill occurred.
- Name of operator.
- Location of spill.
- Date and year of initial operation.
- Maximum oil and hazardous substance storage or handling capacity and normal daily throughput.
- Site description, including maps, flow diagrams, and topographic maps.
- A complete copy of the SPCC plan with any amendments.
- The cause(s) of the spill, including a failure analysis of the system or subsystem in which failure occurred. The failure analysis examines and explains the reason for the failure resulting in the spill. The analysis should be explicit, definitive, and specific. For instance, it would be inadequate to simply report that the cause of the spill was the failure of a storage tank. The failure analysis should detail the nature of failure that caused the spill.
- Corrective actions and/or countermeasures taken, including a description of additional training procedures, equipment repairs, and equipment replacement.
- Added preventive measures or countermeasures to reduce the possibility of recurrence.
- Additional comments regarding the SPCC plan and spill that may be required to clarify the report.
8.0 SPILL CONTROL EQUIPMENT

UVA has a program to manage spill control equipment. Spill control equipment is currently maintained at several locations including:

- Loading dock of the Special Materials Handling Facility on the west side of campus;
- Loading dock at the West Hospital Complex;
- Loading dock at the Main Hospital near O2 tank;
- Main Heating Plant lower level chemical storage area;
- North Grounds Heating Plant;
- Parking and Transportation on Millmont Street;
- Facilities Management on Alderman Road (one next to gasoline fuel pumps, one next to Landscape fuel tank, one in front of Landscape building);
- Fontaine Research Park - Sheridan G. Snyder Building – Utility space next to generator;
- Chiller plant of John Paul Jones Arena;
- Transitional Care Hospital Loading Dock;
- Fontaine – Forestry Yard inside landscape storage area; and
- Next to Athletics diesel fuel tank at Perry Field.

The spill equipment consists of absorbent pads, booms, granular absorbent, and other appropriate materials specific to the site, and are contained in plastic 55-gallon drums or other appropriated containers all labeled as “Oil Spill Response Equipment”. The spill response materials at the Special Materials Handling Facility are stored in a small shed located on the loading dock, labeled “Spill Kit Inside.”
9.0 DRAINAGE PATHWAY AND DISTANCE TO NAVIGABLE WATERS

Spills could result from overfilling during fuel loading/unloading, mechanical failures of attached valves or flanges, a rupture in a pipeline, or structural failures in the wall of a tank, transformer or drum itself.

If a structural failure occurred to a UST when full, most products from the tank would likely be lost into the surrounding soil and possibly groundwater. Although a release from a UST could impact a large area, it would not be expected to pose an immediate threat to local surface water since the tank is underground.

The maps in Appendix B present topography and the pathways for potential release of all tanks, transformers and drums on the UVA campus. In some cases, runoff flows into storm water drop inlets. In other cases, runoff drains directly into creeks or ravines located throughout the hilly campus, or directly onto the grass or soil surrounding the oil storage container.

The three main watersheds associated with the campus are:

• Meadow Creek (northeast portion of UVA);
• Moores Creek (south and west portion of UVA); and
• Ivy Creek (northwest portion of UVA)

All three watersheds drain into the Rivanna River, which at its closest point, is approximately two miles east of the UVA campus.

The maps in Appendix D include all Aboveground Storage Tanks (ASTs), Day Storage Tanks (DSTs) and Underground Storage Tanks (USTs) located at UVA. The list of USTs includes buried storage tanks which are used to store heating oil for consumption on the premises and do not meet the Federal or State definition of USTs. These site specific figures indicate surrounding surface condition, spill direction and secondary containment type, if applicable.
10.0 POTENTIAL SPILL PREDICTIONS, VOLUMES, RATES, AND CONTROL [40 CFR 112.7 (b)]

Tables E-1 through E-5 (Appendix E) summarize potential types of equipment failure for oil storage structures across UVA. As applicable, information provided in these tables include: oil storage container location, UVA ID number, map ID number, type of failure, spill direction, release rate, surface receptor, containment, and spill/overfill protection. Note that type of potential failure and release rate information are based on a worst-case scenario. For ASTs, generator tanks, or transformers, the worst-case scenario represents a catastrophic failure such as “tank rupture” leading to a subsequent surface spill. However, for USTs, the worst-case scenario is based on spills or overfills of 3,000 to 7,500 gallons. This estimate is based on the fact that the USTs at UVA are filled by fuel trucks of these volumes.

Additionally, the maps located in Appendix B show the potential flow direction via topographic relief of a spill from each oil storage container if secondary containment or spill response procedures are insufficient to mitigate the release. In some instances, an estimate of flow direction is not applicable because the oil storage container is located in a 15 to 25 foot deep concrete pit that can readily contain all the oil. The type and approximate capacity of any secondary containment structures are also noted in the tables.
11.0 DRAINAGE CONTROL AND CONTAINMENT
[40 CFR 112.7 (c)]

All areas in which oil is stored are either equipped with appropriate containment and/or diversionary structures to prevent discharged oil from reaching a navigable watercourse or have spill response procedures in place. Tables E-1 through E-5 in Appendix E lists, as applicable, include the secondary containment type for each tank, transformer or drum throughout UVA.

To prevent releases during transfer operations, UVA has requested through its contracts department that all transporters of oil to and from UVA meet the minimum requirements and regulation established by the Department of Transportation. Vendor fuel loading/unloading procedures will comply with 49 CFR 172 and 49 CFR 177 Subpart B. Vendors will develop an adequate program to respond to and contain any spills or other releases. Drivers will prevent vehicular departure before complete disconnect of transfer lines. Drivers will also examine the lowermost drain and all outlets of the fuel delivery trucks. All outlets will be repaired if necessary. Deliveries are supervised by UVA staff.

Acceptable means of containment include:
- Dikes, berms, retaining walls, and secondary tank containment
- Curbing
- Culverting, gutters, or other drainage systems
- Weirs, booms, or other barriers
- Spill diversion ponds
- Retention ponds
- Sorbent materials

In the event that spill response is required, spill control equipment can be found at the locations previously listed in section 8.0.
12.0 IMPracticality of Secondary Containment

[40 CFR 112.7 (d)]

UVA will use secondary containment, spill response, and sorbent materials as its primary means of containment. All practical methods of secondary containment will be considered. The University of Virginia has made the written commitment of manpower, equipment, and materials to expeditiously control and remove any oil discharged. All bulk storage ASTs (those 55 gallons or greater in volume) currently have adequate secondary containment.
13.0 INSPECTIONS/RECORDKEEPING
[40 CFR 112.7 (e)]

UVA has developed an inspection program in accordance with written procedures for the SPCC plan. Records of these inspections and tests will be documented, signed by appropriate personnel, and kept on file for at least three years. Sample inspection checklists are included in Appendix G. Section 18.4 provides more detail on specific inspection and testing requirements. Table 3 details the inspection schedule requirements for the different types and sizes of containers at UVA.

<table>
<thead>
<tr>
<th>Type of Tank</th>
<th>Monthly Inspections Required</th>
<th>Annual Inspections Required</th>
<th>Annual Tightness Tests</th>
<th>Cathodic Test Every 3 Years</th>
<th>Integrity Testing every 20 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST’s < 55 gal (includes drums)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AST’s ≥ 55 gal (includes drums)</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes, for tanks > 5,000 gal</td>
</tr>
<tr>
<td>UST’s Single Walled</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>UST (STI-P3) (Parking & Transportation U0583-1)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>UST’s Double Walled (ACT 100U or equivalent)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Transformers, Silicone, Dry, or < 55 gal</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Spill Prevention, Control, and Countermeasure Plan
University of Virginia – Charlottesville Virginia

Table 3 - Inspection Schedule For Oil Containers at UVA

<table>
<thead>
<tr>
<th>Type of Tank</th>
<th>Monthly Inspections Required</th>
<th>Annual Inspections Required</th>
<th>Annual Tightness Tests</th>
<th>Cathodic Test Every 3 Years</th>
<th>Integrity Testing every 20 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformers containing oil and ≥ 55 gal</td>
<td>No</td>
<td>Every 6 mo</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hydraulically Operated Elevators, ≥ 55 gal</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*Drums located in a drum storage area with no potential for a spill or release to the environment are not inspected monthly.

UST’s that require annual inspections will be inspected according to the UVA Annual Checklist, an example of which can be found in Appendix G. UVA will conduct annual tightness testing on all single wall UST systems (both metallic and non-metallic) and will document the results of these tests. These tests will help determine if any of these USTs have a small leak (< 0.05 gph) that could only be detected through tightness testing. Buried single-wall UST and AST piping, which is part of the tank system, will also be subject to these annual tightness tests. Double wall USTs will be subject to an annual check of the interstitial space for the presence of fluid. The presence of fluid in the interstitial space will be investigated to determine the source and appropriate actions and notifications will be made to correct the situation.
14.0 PERSONNEL TRAINING AND SPILL PREVENTION PROCEDURES
[40 CFR 112.7 (f)]

14.1 Personnel Instructions

UVA recognizes that it is their responsibility to train all UVA personnel in the operation and maintenance of equipment to prevent discharges of oil and to ensure compliance with all applicable pollution control laws and regulations. Facilities Management and Environmental Health and Safety at UVA will provide adequate annual training in implementing the SPCC plan and related requirements. Pursuant with Virginia Administrative Code 9VAC25-580-125, UVA will ensure Class A, B, and C UST operator training is provided to appropriate personnel. Training records are maintained by Facilities Management or Environmental Health and Safety.

14.2 Designation of Responsibility

This section presents UVA’s management structure and responsibilities for maintaining the SPCC plan, starting with the SPCC program manager. The SPCC program manager is responsible for overall SPCC implementation and maintenance. The SPCC program manager will have the authority to designate a person at each facility who is accountable for discharge prevention.

Designated personnel will be required to report the results of inspections, training, or other assignments to the SPCC program manager. Specific SPCC management tasks are included as a cross reference checklist in Appendix F. The organizational structure to be used by UVA is described below.

14.2.1 SPCC Program Manager or Alternate SPCC Program Manager

The SPCC program manager has responsibility for implementing and maintaining the SPCC plan. The program manager, or as designated, the alternate program manager are responsible for ensuring the listed responsibilities are completed. In the absence of the SPCC program manager, the alternate SPCC program manager assumes all duties and responsibilities. Other appropriate staff may be designated to complete any of the listed responsibilities. The program manager’s specific responsibilities include:

• Ensuring the implementation of the SPCC plan, including all applicable procedures and training requirements. Amending the SPCC plan depending on whether any change in oil containing equipment materially affects the potential for UVA to discharge oil into the environment. Before amending, the program manager should review all plans and drawings related to oil product storage, handling, or transfer for new construction, maintenance, or refurbishment to determine if an amendment to the SPCC plan is required.

• Coordinating with the various areas to develop safety, security, and inspection logs for the material and equipment under each area’s oversight as required in 40 CFR 112.

• Coordinating inspections at least once every five years to determine if plan modifications are required to maintain compliance with SPCC guidelines and
obtaining a re-evaluation and re-certification of the SPCC Plan by a registered professional engineer every five years if plan modifications are required.

- Identifying the number and types of personnel who require training, and coordinating the necessary training. Only personnel who deal with oil products as part of their normal job functions will require training. New employees who meet these criteria should be trained within six months from the date of employment. Training will include oil management procedures, spill recognition, reporting, and containment/cleanup. Training will comply with 40 CFR 112.7(f) requirements.
- Performing inspections at least annually to ensure spill kits are stocked
- Reminding appropriate area personnel of applicable inspection, maintenance, and recordkeeping requirements for oil-containing equipment used in their specific area. These requirements include:
 - Inspecting all tanks, transformers, piping, secondary containment structures, etc. and keeping inspection logs.
 - Reporting on, developing, and initiating an action plan and schedule for correcting deficiencies identified during inspections.
 - Reporting the results of all inspections and corrective actions to the SPCC program manager on a regular basis and consulting with the program manager where necessary.
 - Informing the SPCC program manager of the need to restock spill kits after use.
 - Notifying the SPCC program manager of any modifications, additions, or removals of tanks, transformers, or drums on a regular basis.

14.2.2 Environmental Health and Safety

- Provide spill response capabilities utilizing OSHA trained staff
- Coordinate the disposal of petroleum contaminated materials and collected petroleum
- Coordinate spill response and site cleanup with SPCC Program Manager
- Maintain training and training records for EHS response staff
- Maintain an adequate supply of response equipment including absorbents for both wet and dry conditions, booms, and other response tools.

14.2.3 UVA Employees

UVA has numerous employees who have defined responsibilities for ensuring compliance with the SPCC plan as part of their job function. These individuals are responsible for the normal housekeeping and day-to-day operations of the tanks, elevators, transformers, and drums under their area’s control. In addition, employees who have duties related to the inspection, maintenance, and spill response for USTs under 9VAC25-580-125 shall receive Class A, B, or C UST operator training as required. Specific responsibilities include:

- Ensuring that all valves on oil containing devices are properly closed so as not to allow any release of oil.
- Ensuring that secondary containment structures are in good condition and are functioning properly so as not to allow any release of oil.
• Properly responding to, cleaning up, and disposing of small spills so as to make sure that all oil is cleaned up.
• Verifying on a regular basis that tanks, transformers and drums, particularly large capacity USTs and ASTs, are not leaking.
• Notifying the SPCC program manager of any unauthorized access to oil storage devices or acts of vandalism to these items.
• Undertaking applicable inspection, maintenance, reporting, and recordkeeping requirements for oil-containing equipment used in their specific area.

14.3 Spill Prevention Briefings

SPCC briefings will be performed once a year. Spill events or failures, malfunctioning components, and recently developed procedures will be addressed as part of these briefings. These briefings may be undertaken as part of compliance requirements for Class C UST operator training and may be provided by Class A UST operators at UVA. Records are maintained by Environmental Resources or Environmental Health and Safety.
15.0 SECURITY
[40 CFR 112.7 (g)]

This section pertains to security requirements on the UVA campus. UVA in general is a well-lit and secure campus, particularly those areas with high pedestrian or vehicular traffic. In addition, UVA maintains its own police force which regularly patrols the campus.

15.1 Fences and Locks

Some ASTs, generators, and transformers are protected by chain-linked fences, depending on the risk posed by each piece of equipment. All fences will be locked when these devices are not being serviced. All transformers are locked.

15.2 Flow Valves Locked

Flow valves that permit the direct outward flow of the tank’s content to the surface will be locked and in the closed position when in non-operating or standby status.

15.3 Starter Controls Locked

Starter controls for all pumps will be locked and in the off position and only accessible to authorized personnel when not in use.

15.4 Lighting Adequate to Detect Spills

Most of the UVA campus is sufficiently lit to illuminate a release from a tank, transformer, drum, or hydraulically operated elevator. The UVA police department regularly patrols the campus for security purposes, particularly looking for acts of crime such as vandalism.
16.0 OTHER MORE STRINGENT PREVENTION STANDARDS
[40 CFR 112.7 (j)]

Motor fuel and emergency generator USTs are the only tanks at UVA that fall under more stringent requirements (9 VAC 25-580). These tanks are listed in this plan as required by 40 CFR 112; however, these tanks do not have to be included in the other aspects of this plan.

UVA is subject to the Registration, Notification, and Closure requirements of Virginia’s aboveground storage tank regulations in 9 VAC 25-91, Part II. It is not subject to the Pollution Prevention Requirements or ODCP Requirements of 9 VAC 25-91, Parts III and IV because it does not meet the applicability criteria of aggregate aboveground capacity of regulated tanks.
17.0 DRAINAGE CONTROL
[40 CFR 112.8 (b)]

17.1 Drainage from Areas with Secondary Containment

All secondary containment structures will be restrained by valves or another positive pressure means to prevent leakage of oil from the containment system. As part of this requirement, SPCC regulations require the inspection of rainfall that could collect in any secondary containment structure. Currently UVA does not have, nor anticipates installing, any secondary containment structures that are exposed to precipitation. However, in the event that a secondary containment structure is installed that is exposed to precipitation; UVA will develop procedures for inspecting and draining rainwater from these secondary containment structures. All rainwater will be observed for the presence of oil to ensure that none will be discharged into the water.

17.2 Drain Valves

UVA does not have secondary containment structures exposed to precipitation. However, any future secondary containment structure that may be exposed to precipitation will not use flapper-type drain valves to drain diked areas. All valves will be, as far as practical, of manual and open and closed design.
18.0 BULK STORAGE CONTAINERS
[40 CFR 112.8 (c)]

This section pertains to bulk storage containers, which are generally defined as ASTs or other appropriate containers having at least 55 gallons of oil storage capacity.

18.1 Tank Compatibility with its Contents

All tanks in which oil is stored are constructed of steel, fiberglass, or a composite of the two and are compatible with the materials they store.

18.2 Secondary Containment for Bulk Storage Tanks

According to SPCC regulations, secondary containment must be in place for all bulk storage containers. UVA will continue to use secondary containment for all bulk storage containers with capacities of 55 gallons or more.

All ASTs at UVA have secondary containment. In a few locations, the tanks, drums, or containers are located in interior structures that will serve as secondary containment as all have concrete floors with no storm drains in the immediate vicinity. Drums of petroleum products are always stored either inside or at least under cover from weather. In locations where a release to the environment could occur, the drums are stored on containment pallets. Drums are also used to store used cooking oils and grease at various kitchens around campus. In these cases, the drums are kept on a containment pallet until the contract waste recycler comes and picks them up. New or recycled empty drums are then left in their place by the waste hauler.

Tables E-1, E-3, E-4, and E-5 in Appendix E list all ASTs and secondary containment currently in place. The locations of all ASTs, transformers, drums, and generator internal tanks and day tanks are shown in Tables B-1, B-3, B-4, and B-5 of Appendix B.

18.3 Corrosion Protection of Buried Metallic Storage Tanks

Buried metallic heating oil storage tanks are protected from corrosion by coatings or cathodic protection and are regularly leak tested. The structural materials for all USTs are listed in Table C-2 of Appendix C. Regulated USTs fall under the jurisdiction of the State of Virginia UST program and are subject to those design and monitoring requirements. All future USTs and piping installed at UVA will be constructed of non-corrodible material or have a cathodic protection system installed at the time of installation. Double wall installations will be the preferred design for piping and tanks.

18.4 Periodic Integrity Testing and Periodic Inspections

There are inspection checklists in place for preventive maintenance of all fuel tanks. All aboveground tanks (heating fuel oil tanks, diesel tanks, waste oil tanks, generator internal and day tanks) included in this SPCC plan will be inspected monthly. The inspection checklists (Appendix G) will provide details such as inspections of tank seams/gaskets; fill pipes, and tank supports and foundations. As part of the routine
monthly inspection, the interstitial space will be checked for the presence of fluid. The exterior of the tanks will be examined for the presence of corrosion or other signs of deterioration. Transformers will be inspected twice a year. The inspections will be documented and the records maintained for at least 3 years. Records of inspections will be maintained or accessible by Environmental Resources.

UVA inspection personnel will notify the SPCC program manager any time leaks, spills, overfills or signs of deterioration are observed. UVA personnel will undertake all appropriate action to repair a tank, effectively respond to and clean up any spills or leaks, and properly dispose of water detected in a tank.

Per the SPCC Amendments of December 2008, an owner must adopt integrity testing requirements as outlined in industry standards for all ASTs. At this facility, most ASTs have capacities below 5,000 gallons. According to the Steel Tank Institute’s (STI) Standard for the Inspection of Aboveground Storage Tanks (SP001, September 2011), periodic visual inspections as described above are sufficient for shop manufactured Category 1 (ASTs with spill control and continuous release detection) tanks with capacities less than 5,000 gallons. Likewise, periodic visual inspections alone are recommended for drums. UVA also maintains several Category 1 ASTs that have capacities over 5,000 gallons (See Table 4). Under STI standards, these tanks must undergo a more rigorous formal non-destructive external inspection at least once every 20 years by a trained and STI or API certified inspector. UVA will arrange for a certified inspector to conduct these inspections.

<table>
<thead>
<tr>
<th>Tank ID</th>
<th>Tank Name</th>
<th>Tank Size</th>
<th>Tank Use</th>
<th>Integral with Generator</th>
<th>Installed Date</th>
<th>Integrity Testing Due Date (Every 20 Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0599-1</td>
<td>ITC Data Center Generator</td>
<td>8350</td>
<td>Generator</td>
<td>Yes</td>
<td>03-Sep-10</td>
<td>03-Sep-2030</td>
</tr>
<tr>
<td>A1142-2</td>
<td>Jordan Hall 2000 kW generator</td>
<td>5880</td>
<td>Generator</td>
<td>Yes</td>
<td>01-Nov-10</td>
<td>01-Nov-2030</td>
</tr>
<tr>
<td>A1149-2</td>
<td>South Chiller - 11th Street Garage</td>
<td>6490</td>
<td>Generator</td>
<td>Yes</td>
<td>19-Apr-11</td>
<td>19-Apr-2031</td>
</tr>
<tr>
<td>A1149-3</td>
<td>South Chiller - 11th Street Garage</td>
<td>6490</td>
<td>Generator</td>
<td>Yes</td>
<td>19-Apr-11</td>
<td>19-Apr-2031</td>
</tr>
</tbody>
</table>
Table 4 – ASTs With Capacities Greater Than 5,000 gal.

<table>
<thead>
<tr>
<th>Tank ID</th>
<th>Tank Name</th>
<th>Tank Size</th>
<th>Tank Use</th>
<th>Integral with Generator</th>
<th>Installed Date</th>
<th>Integrity Testing Due Date (Every 20 Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1760-1</td>
<td>Sheridan G. Snyder Building</td>
<td>6480</td>
<td>Generator</td>
<td>Yes</td>
<td>15-Dec-07</td>
<td>15-Dec-2027</td>
</tr>
<tr>
<td>A3714-1</td>
<td>UVA Transitional Care Hospital</td>
<td>8000</td>
<td>Generator</td>
<td>No</td>
<td>01-May-10</td>
<td>01-May-2030</td>
</tr>
</tbody>
</table>

18.5 Tank Installation Fail-Safe Engineered

All USTs subject to federal and state spill and overfill regulations at UVA have spill and overfill systems in place. Newly installed ASTs also have spill and overfill protections installed. Existing buried heating oil tanks are not subject to these regulations. Automatic shutoff devices, high level alarms, and fuel level gauges at the tank are effective in achieving the overfill requirements. The specific type of protection for each tank will be tested per manufacturer requirements. Spill prevention can be achieved through the use of spill buckets or other similar containment devices installed at the fill port.

18.6 Visible Oil Leaks Corrected

As part of UVA’s inspection program, any visible oil leaks from seams, gaskets, rivets, and bolts will be promptly corrected.

18.7 Appropriate Position of Mobile or Portable Oil Storage Tanks

UVA owns one small portable oil storage tank that is used to fuel portable and earthmoving equipment and three portable generators with fuel tanks greater than 55 gallons, all double-walled. Routine inspections are performed on these units. If any other portable tanks are added to the system, they will meet the above criteria.
19.0 FACILITY TRANSFER OPERATIONS
[40 CFR 112.8(d)]

This section pertains to the maintenance and management of all oil piping.

19.1 Buried Piping Cathodic Protection and Examination

UVA has conducted a survey to verify that all buried AST and UST piping that operates under pressure is made of non-corrodible material. Piping in any future installations will meet the non-corrodible standards. Tightness testing of these corrosive product lines will be conducted annually.

19.2 Not-In-Service and Standby Service Terminal Connections

Pipelines that are out of service or on standby service for an extended period of time will be plugged and marked as such.

19.3 Pipe Supports Design

Pipe supports are designed to minimize abrasion and corrosion, and to allow for expansion and contraction.

19.4 Aboveground Valve and Pipeline Examination

UVA will conduct an above-ground piping inspection as part of its periodic visual inspections (Appendix G), paying particular attention to piping joints, valves, supports, valves, and metal surfaces. Piping whose rupture may lead to a serious spill event may be periodically pressure tested.

19.5 Aboveground Piping Vehicular Traffic Protection

All above-ground piping in traffic areas is protected from vehicular traffic by concrete or steel posts. Vent pipes are typically situated next to buildings and fences to avoid traffic interference.
20.0 SPCC REQUIREMENTS FOR ANIMAL AND VEGETABLE FATS AND OILS
[40 CFR 112.12]

UVA typically stores used cooking related oils, greases, and fats at various dining halls/restaurants around the campus. Drums are kept on secondary containment pallets until they are picked up by the recycler. All containers will meet the requirement of the SPCC regulations and will be listed in the inventory records.
21.0 SPCC REQUIREMENTS THAT ARE NOT APPLICABLE

<table>
<thead>
<tr>
<th>40 CFR Citation</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.7 (g)(4)</td>
<td>Pipeline Loading/Unloading Connections</td>
</tr>
<tr>
<td>112.7 (h)</td>
<td>Tank Car/Tank Truck Loading Rack</td>
</tr>
<tr>
<td>112.7 (i)</td>
<td>Field-Erected ASTs</td>
</tr>
<tr>
<td>112.8 (b)(3)</td>
<td>Undiked Area Drainage System</td>
</tr>
<tr>
<td>112.8 (b)(4)</td>
<td>Final Discharge Diversion System</td>
</tr>
<tr>
<td>112.8 (b)(5)</td>
<td>Water Treatment</td>
</tr>
<tr>
<td>112.8 (c)(3)</td>
<td>Drainage of Rainwater</td>
</tr>
<tr>
<td>112.8 (c)(5)</td>
<td>Partially Buried Tanks</td>
</tr>
<tr>
<td>112.8 (c)(7)</td>
<td>Internal Heating Coils</td>
</tr>
<tr>
<td>112.8 (c)(9)</td>
<td>Effluent Treatment Facilities</td>
</tr>
<tr>
<td>112.9</td>
<td>Oil Production Facilities</td>
</tr>
<tr>
<td>112.10</td>
<td>On-Shore Oil Drilling</td>
</tr>
<tr>
<td>112.11</td>
<td>Off-Shore Oil Drilling</td>
</tr>
</tbody>
</table>