SPILL PREVENTION, CONTROL, AND COUNTERMEASURES PLAN
FOR THE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Prepared by:
Aegis Environmental, Inc.
11511 Allecingie Parkway
Richmond, VA 23235

Prepared for:
Facilities Management – Environmental Resources
University of Virginia
P.O. Box 400726
Charlottesville, VA 22904-4322

Contact: Kristin Carter, PE
434-982-5034
kma4z@virginia.edu

July 20, 2009
Revised January 10, 2014
Revised August 20, 2014
Revised December 27, 2018
Revised January 25, 2019
By UVA Environmental Resources Staff
and Aegis Environmental, Inc.

Note: As required by the U.S. Environmental Protection Agency in 40 CFR Part 112 dated October 1, 2003, this document has been revised by the Energy and Utilities division of the University of Virginia’s Facilities Management department to reflect the changes in the SPCC regulations and changes in UVA equipment.
Professional Engineer Certification

[40 CFR 113.39d]

Upon examination of the University of Virginia main campus in Charlottesville, Virginia, and review of this spill prevention, control, and countermeasures plan as required in 40 CFR 112, Environmental Protection Agency Regulations on Oil Pollution Prevention, I certify that

(i) That I am familiar with the requirements of this regulation;
(ii) That I or one of my agents has visited and examined the facility;
(iii) That the Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards, and with the requirements of this part;
(iv) That procedures for required inspections and testing have been established; and
(v) That the Plan is adequate for the facility.

Signature Date

Lori Bonds, P.E.
Amendments Requiring P.E. Certification

<table>
<thead>
<tr>
<th>Type of Amendment</th>
<th>PE Certification Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>New, reconstruction or removal of tanks.</td>
<td>YES</td>
</tr>
<tr>
<td>Secondary containment changes (physical).</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to loading/unloading procedures.</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to drainage system.</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to Site Plan.</td>
<td>YES</td>
</tr>
<tr>
<td>Reconstruction, replacement or installation of piping systems.</td>
<td>YES</td>
</tr>
<tr>
<td>Changes of product or service.</td>
<td>YES</td>
</tr>
<tr>
<td>Revision of standard operating procedures.</td>
<td>YES</td>
</tr>
<tr>
<td>Revision of inspection methods or frequency.</td>
<td>YES</td>
</tr>
<tr>
<td>Changes to contact list - name change only.</td>
<td>NO</td>
</tr>
<tr>
<td>Revision of training materials.</td>
<td>NO</td>
</tr>
<tr>
<td>Revision of training frequency.</td>
<td>YES</td>
</tr>
<tr>
<td>Revision of security measures.</td>
<td>YES</td>
</tr>
<tr>
<td>Editing - correction of typographical errors.</td>
<td>NO</td>
</tr>
<tr>
<td>Editing - revision of wording for clarification.</td>
<td>NO</td>
</tr>
</tbody>
</table>
Management Approval

[40 CFR 112.7]

The University of Virginia is committed to the prevention of discharges of oil to navigable waters and the environment, and maintains the highest standards for spill prevention, control, and countermeasures through regular review, updating, and implementation of this Spill Prevention, Control, and Countermeasures Plan for the University of Virginia main campus in Charlottesville, Virginia.

University of Virginia Authorized Representative

Name: Colette Sheehy
Title: Senior Vice President for Operations

___ ________________
Signature Date
University of Virginia Authorized Representative
Certification of Substantial Harm Determination Form

FACILITY NAME: University of Virginia

FACILITY ADDRESS:
Environmental Resources
Facilities Management
P.O.Box 400726
University of Virginia
Charlottesville, VA 22904-4726

1. Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons? YES NO X

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground storage tank area? YES NO X

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate USEPA formula or a comparable formula1) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments? For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA=s A Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments and the applicable Area Contingency Plan. YES NO X

4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate USEPA formula or a comparable formula1) such that a discharge from the facility would shut down a public drinking water intake2. YES NO X

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last 5 years? YES NO X

CERTIFICATION
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information. I believe that the submitted information is true, accurate, and complete.

___ _______________________________
Signature Vice President for Management and Budget

___ _______________________________
Name (please type or print) Date

1 If a comparable formula is used documentation of the reliability and analytical soundness of the comparable formula must be attached to this form.

2 For the purposes of 40 CFR 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).
Table of Contents

1.1 INTRODUCTION [40 CFR 112.1 and 40 CFR 112.3] ... 1
1.2 Regulatory Requirements .. 1
1.3 Purpose and Plan Organization .. 2
2.1 PLAN REVIEW AND AMENDMENT PROCEDURES [40 CFR 112.4 and 5] 2
 2.2 U.S. EPA Required Review and Amendments ... 3
 2.3 Modification Review and Amendments .. 4
 2.4 Five-Year Review and Amendments ... 4
3.0 OWNER AND OPERATOR ... 5
4.0 FACILITY LAYOUT .. 6
5.0 UVA CONTACTS ... 7
6.1 SITE DESCRIPTION ... 7
 6.2 Operations ... 8
 6.3 Oil Storage Inventory .. 9
7.1 SPILL RESPONSE ACTIONS [40 CFR 112.7(a)(3)(iv)] .. 9
 7.2 General Response .. 9
 7.3 Internal Notification – Initial Response .. 10
 7.4 Disposal of Spilled Materials [40 CFR 112.7 (a)(3)(v)] .. 11
 7.4.1 Safety Precautions .. 12
 7.4.2 Free Product (Oil, Diesel, or Gasoline) .. 12
 7.4.3 Contaminated Soils, Absorbents, Etc ... 13
8.0 EXTERNAL ALERT PROCEDURES .. 14
 8.2 UVA Personnel .. 14
 8.3 Regulatory Notifications .. 14
 8.4 Notification of Release Content ... 15
 8.5 Written Reports to EPA and VA DEQ ... 16
9.0 SPILL CONTROL EQUIPMENT ... 17
10.0 DRAINAGE PATHWAY AND DISTANCE TO NAVIGABLE WATERS 18
11.0 POTENTIAL SPILL PREDICTIONS, VOLUMES, RATES, AND CONTROL 19
12.0 DRAINAGE PATHWAY AND DISTANCE TO NAVIGABLE WATERS 19
13.0 IMPRACTICALITY OF SECONDARY CONTAINMENT ... 20
14.0 INSPECTIONS/RECORDKEEPING ... 21
15.1 PERSONNEL TRAINING AND SPILL PREVENTION PROCEDURES [40 CFR 112.7(f)] 22
 15.2 Personnel Instructions .. 22
 15.3 Designated Person Accountable for Spill Prevention .. 23
 15.4 Designation of Responsibility [40 CFR 112.7 (f)(2)] .. 23
 15.3.1 SPCC Program Manager ... 24
 15.3.2 SPCC Training Coordinator ... 25
 15.3.3 SPCC Maintenance Coordinator ... 25
 15.3.4 UVA Employees ... 26
 15.4 Spill Prevention Briefings .. 26
16.0 SECURITY ... 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>Fences and Locks</td>
<td>27</td>
</tr>
<tr>
<td>16.3</td>
<td>Flow Valves Locked</td>
<td>27</td>
</tr>
<tr>
<td>16.4</td>
<td>Starter Controls Locked</td>
<td>27</td>
</tr>
<tr>
<td>16.5</td>
<td>Pipeline Loading/Unloading Connections Securely Capped</td>
<td>27</td>
</tr>
<tr>
<td>16.6</td>
<td>Lighting Adequate to Detect Spills</td>
<td>27</td>
</tr>
<tr>
<td>17.1</td>
<td>FACILITY TANK CAR LOADING/UNLOADING OPERATIONS</td>
<td>28</td>
</tr>
<tr>
<td>17.2</td>
<td>Tank Car and Truck Loading/Unloading Operations</td>
<td>28</td>
</tr>
<tr>
<td>17.3</td>
<td>Adequate Containment for Vehicles</td>
<td>28</td>
</tr>
<tr>
<td>17.4</td>
<td>Warning or Barrier System for Vehicles</td>
<td>28</td>
</tr>
<tr>
<td>17.5</td>
<td>Vehicles Examined for Lowermost Drainage Outlets before Leaving</td>
<td>28</td>
</tr>
<tr>
<td>18.0</td>
<td>FIELD CONSTRUCTED ASTS</td>
<td>29</td>
</tr>
<tr>
<td>19.0</td>
<td>OTHER MORE STRINGENT PREVENTION STANDARDS</td>
<td>29</td>
</tr>
<tr>
<td>20.1</td>
<td>DRAINAGE CONTROL</td>
<td>29</td>
</tr>
<tr>
<td>20.2</td>
<td>Drainage from Areas with Secondary Containment</td>
<td>29</td>
</tr>
<tr>
<td>20.3</td>
<td>Drain Valves</td>
<td>29</td>
</tr>
<tr>
<td>20.4</td>
<td>Undiked Area Drainage</td>
<td>30</td>
</tr>
<tr>
<td>20.5</td>
<td>Final Discharge and Treatment</td>
<td>30</td>
</tr>
<tr>
<td>21.1</td>
<td>BULK STORAGE CONTAINERS</td>
<td>30</td>
</tr>
<tr>
<td>21.2</td>
<td>Tank Compatibility with its Contents</td>
<td>30</td>
</tr>
<tr>
<td>21.3</td>
<td>Secondary Containment for Bulk Storage Tanks</td>
<td>30</td>
</tr>
<tr>
<td>21.4</td>
<td>Drainage of Rainwater</td>
<td>31</td>
</tr>
<tr>
<td>21.5</td>
<td>Corrosion Protection of Buried Metallic Storage Tanks</td>
<td>31</td>
</tr>
<tr>
<td>21.6</td>
<td>Corrosion Protection of Partially Buried Metallic Tanks</td>
<td>32</td>
</tr>
<tr>
<td>21.7</td>
<td>Aboveground Tank Periodic Integrity Testing and Periodic Inspections</td>
<td>32</td>
</tr>
<tr>
<td>21.8</td>
<td>Control of Leakage through Internal Heating Coils</td>
<td>33</td>
</tr>
<tr>
<td>21.9</td>
<td>Tank Installation Fail-Safe Engineered</td>
<td>34</td>
</tr>
<tr>
<td>21.10</td>
<td>Observation of Disposal for Effluent Discharge</td>
<td>34</td>
</tr>
<tr>
<td>21.11</td>
<td>Visible Oil Leaks Corrected</td>
<td>34</td>
</tr>
<tr>
<td>21.12</td>
<td>Appropriate Position of Mobile or Portable Oil Storage Tanks</td>
<td>34</td>
</tr>
<tr>
<td>22.1</td>
<td>FACILITY TRANSFER OPERATIONS</td>
<td>34</td>
</tr>
<tr>
<td>22.2</td>
<td>Buried Piping Cathodic Protection and Examination</td>
<td>34</td>
</tr>
<tr>
<td>22.3</td>
<td>Not-In-Service and Standby Service Terminal Connections</td>
<td>35</td>
</tr>
<tr>
<td>22.4</td>
<td>Pipe Supports Design</td>
<td>35</td>
</tr>
<tr>
<td>22.5</td>
<td>Aboveground Valve and Pipeline Examination</td>
<td>35</td>
</tr>
<tr>
<td>22.6</td>
<td>Aboveground Piping Vehicular Traffic Protection</td>
<td>35</td>
</tr>
<tr>
<td>23.</td>
<td>OIL PRODUCTION FACILITIES</td>
<td>35</td>
</tr>
<tr>
<td>24.</td>
<td>ON SHORE OIL DRILLING FACILITIES</td>
<td>35</td>
</tr>
<tr>
<td>25.</td>
<td>OFF SHORE OIL DRILLING FACILITIES</td>
<td>36</td>
</tr>
<tr>
<td>26.</td>
<td>SPCC REQUIREMENTS FOR ANIMAL AND VEGETABLE FATS AND OILS</td>
<td>36</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Facility Location and Index Map...6

List of Tables

Table 1. UVA SPCC Plan Contacts ...7
Table 2. Oil Storage Capacity ..8
Table 3. Internal Notification Personnel ...11
Table 4. Internal Emergency Contacts ..14
Table 5. Inspection Schedule for Oil Containers at UVA21
Table 6. AST's With Capacities Greater than 5,000 Gallons33

Appendices

A. Federal and State SPCC Regulations
 CFR Title 40, Chapter 1, Subchapter D, Part 112
 9VAC25-91-10 et.seq, Facility and AST Regulations
 9VAC25-580-10 et.seq, Underground Storage Regulations
B. University Area Maps (Central Grounds, West Ground, North Grounds, and Fontaine Research Park.)
C. Oil Storage Inventory
D. AST Facility Maps, Day Storage Tank Maps, Underground Storage Tank Maps
E. Potential Equipment Failure Summary
F. SPCC Cross-Reference Checklist
G. Monthly AST Inspection Checklist and Annual UST Inspection Checklist
H. Spill History
I. Revisions and Additions to SPCC Plan
J. Emergency Response Contacts and Phone Numbers
1.0 INTRODUCTION [40 CFR 112.1 and 40 CFR 112.3]

The Code of Federal Regulations (CFR), Title 40, Part 112 (40 CFR 112) requires spill prevention, control, and countermeasures (SPCC) plans to be implemented by organizations that conduct operations involving the storage, transfer, or consumption of oil or oil products. The University of Virginia (UVA) main campus and proximate locations in Charlottesville, Virginia are subject to these requirements.

1.1 Regulatory Requirements [40 CFR 112.1, 40 CFR 112.3 and 40 CFR 112.7(a)(1 and 2)]

40 CFR 112.1 and 40 CFR 112.3 requires development of SPCC plans for certain organizations with the potential for discharge of oil into or upon navigable waters of the United States. Because UVA stores oil products (heating fuel oil, diesel, gasoline, waste oil, transformer oil, etc.) in aggregate greater than 1,320 gallons above-ground capacity and additionally the completely buried oil storage capacity is greater than 42,000 gallons, 40 CFR 112 is applicable. The SPCC plan is an engineering and management strategy designed to prevent UVA from discharging oil products that may impact the quality of navigable waters or adjoining shorelines. Because UVA has a total aboveground oil storage capacity of more than 10,000 gallons and has individual aboveground oil containers greater than 10,000 gallons, UVA’s SPCC plan must be certified by a Professional Engineer (PE). UVA’s SPCC Plan is prepared in accordance with good engineering practices and has the full approval of UVA management at a level with authority to commit the necessary resources to ensure plan implementation. This plan will be updated and re-certified every five years. Appendix A contains a copy of the relevant federal SPCC regulations found in 40 CFR 112.

The following is a summary of 40 CFR 112 sections applicable to UVA and the status of compliance with these at the time of this most recent revision.

- Petroleum storage tanks, containers, and pipelines are compatible with the material stored and are periodically tested and/or inspected.
- Above-ground bulk petroleum storage containers (ASTs) of 55-gallons or greater have secondary containment provided for the volume of the AST plus sufficient volume for precipitation, if required.
• AST valves and pipelines are subject to regular examinations by operating personnel.
• New underground metallic storage tanks and pipelines, including those for heating oil tanks, will have corrosion protection; overfill prevention devices, and adequate pipe supports.
• Storage tanks and pipelines have provisions for traffic protection.
• UVA has implemented security measures.
• UVA personnel who work with oil products are instructed and briefed on proper spill prevention and response procedures on an annual basis.

1.2 Purpose and Plan Organization

The purpose of the SPCC plan is to establish procedures, methods, equipment, and other criteria to prevent the discharge of oil products from non-transportation-related onshore and offshore facilities into or upon navigable waters of the United States or adjoining shorelines.

The SPCC plan will address the following:
• Existing oil-containing devices at UVA and proximate locations in Charlottesville, Virginia with a potential for a spill of oil products.
• Existing containment and diversionary structures constructed to control spill occurrences.
• Actions required and designated responsibilities to achieve compliance with SPCC requirements.

This plan is organized by key elements required in an SPCC plan. Where applicable, regulatory requirements listed in 40 CFR 112 are cited in the section heading.

2.0 PLAN REVIEW AND AMENDMENT PROCEDURES [40 CFR 112.4 and 5]

UVA will amend the SPCC plan:
• When required by the U.S. EPA Regional Administrator after review of the SPCC plan submitted because of a spill;
• Whenever there is a change in design, construction, operations, or maintenance which materially affects the potential for an oil spill; or
• If the required five-year review of the plan indicates more effective control and prevention technology will significantly reduce the likelihood of a spill (if such technology has been field proven).

All SPCC plan technical amendments will be certified by a registered professional engineer. The SPCC program manager will keep a copy of all amendments to this plan and will note such amendments.

2.1 U.S. EPA Required Review and Amendments

UVA will submit the SPCC plan with any amendments to the U.S. EPA and to the Virginia Department of Environmental Quality whenever:

• A single spill event results in a 1,000 gallon or more oil discharge; or
• Two spill events resulting in oil discharges of 42 gallons or more each within a 12 month period.

Within 60 days of the occurrence of either of these two conditions, UVA will submit a report to the U.S. EPA Regional Administrator. A complete copy of all information provided to U.S. EPA also will be sent at the same time to the Virginia Department of Environmental Quality; which they may review and make recommendations to the U.S. EPA to prevent and to contain discharges of oil from UVA. The U.S. EPA will review the information and any recommendations made by Virginia Department of Environmental Quality. The U.S. EPA may also require UVA to amend the SPCC plan.

When the U.S. EPA proposes to amend the SPCC plan, UVA will be notified by certified mail or by personal delivery. The U.S. EPA will specify the terms of such amendment. Within 30 days from receipt of this notice, UVA may submit written information, views, and arguments on the proposed amendment. After considering all material presented, the U.S. EPA will notify UVA of the amendment required or will rescind the notice. The amendment required becomes a part of the SPCC plan 30 days after such notice, unless UVA appeals. The amendment will be implemented no later than six months after the amendment becomes a part of the SPCC plan.
2.2 Modification Review and Amendments

Whenever there is a change in design, construction, operations, or maintenance that may materially affect the potential for an oil spill, UVA personnel will notify the SPCC program manager, who may amend this SPCC plan to reflect such a change if necessary. This change could be either the result of construction of a new structure or modifications to an existing structure.

As specified, the SPCC program manager is responsible for reviewing all plans for new construction, maintenance or remodeling to determine if an amendment of the SPCC plan is required. If the plan must be amended, the SPCC program manager is responsible for having it amended and seeing that the amendments are implemented as soon as possible, but no later than six months after the change in design, construction, operations, or maintenance occurred.

2.3 Five-Year Review and Amendments

UVA will review and evaluate the SPCC plan at least once every five years. This review will include an assessment of new technology that has become available for the prevention of spills since the plan was last reviewed. In addition, UVA will verify conformance with the SPCC plan requirements and the fact that past recommendations have been implemented. As a result of this review and evaluation, the SPCC plan will be amended within six months to include more effective prevention and control technology if the technology will significantly reduce the likelihood of a spill and if the technology has been field proven at the time of the review. The SPCC program manager is responsible for seeing that this plan is reviewed for applicability of new technology at least every five years. For all technical amendments, a licensed professional engineer will certify that the plan has been reviewed in accordance with applicable spill regulations and best management practices.
3.0 OWNER AND OPERATOR

OWNER/OPERATOR, ADDRESS AND TELEPHONE:

Owner: Commonwealth of Virginia
Operator: Board of Visitors, University of Virginia
Point of Contact: SPCC Manager

Ms. Kristin Carter, SPCC Manager
Environmental Resources
Facilities Management
University of Virginia
575 Alderman Road
P.O. Box 400726
Charlottesville, VA 22904-4726

Telephone: 434-982-5034
4.0 FACILITY LAYOUT [40 CFR 112.7 (a)(3)]

Figure 1 is a site location map of UVA Campus and the Charlottesville area. This figure shows the UVA Campus and indexes the more detailed site maps located in Appendix B which show the locations of all applicable oil containers and equipment. Specifics such as capacity and type of oil stored for each of the containers can be found in the tables in Appendices C and E. Appendix D contains site specific maps for ASTs showing likely surface flow release directions.

![Figure 1. Facility Location and Index Map.](image)

From USGS Charlottesville West and East 7.5 Minute Quadrangles, Photorevised 1987. Larger scale maps are in Appendix B. The Northridge Medical Campus is located just west of the index map and Fontaine Research Park is to the south and west of this map.
5.0 UVA CONTACTS [40 CFR 112.7(a)(3)(vi)]

The following UVA personnel listed in Table 1 are the primary contacts for the SPCC plan. Sections 7 and 8 of this plan provide detailed instructions and phone numbers for contacting emergency personnel both internal and external to UVA.

<table>
<thead>
<tr>
<th>Title/Contact/Dept</th>
<th>Telephone</th>
<th>24-Hour Emergency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCC Program Manager - Kristin Carter</td>
<td>Office: (434) 982-5034</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td></td>
<td>FM Service Desk – (434) 924-1777</td>
<td></td>
</tr>
<tr>
<td>Alternate SPCC Program Manager - Jess Wenger</td>
<td>(434) 982-5540</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td>Environmental Health and Safety – Spill Response</td>
<td>(434) 982-4911</td>
<td>(434) 982-4865 – EHS responder on call</td>
</tr>
</tbody>
</table>

6.0 SITE DESCRIPTION [40 CFR 112.7(a)(3)]

UVA operates its main campus and proximate locations in the western portion of the City of Charlottesville, Virginia and a portion of Albemarle County. UVA’s SIC code is 8221 (colleges, universities, etc.).

For the purpose of this SPCC plan, the main campus and proximate locations have been divided into the following areas with representative maps located in Appendix B:

- North Grounds – Area north of Ivy Road including facilities along Emmet Street
- West Grounds – Scott Stadium and facilities west of the stadium
- Central Grounds– Hospital to Chemistry
- Fontaine Research Park
• Northridge Medical Campus (west of UVA campus on Route 250)

6.1 Operations

The ASTs and USTs on campus are used primarily to provide fuel for heating and fuel for backup power to various UVA facilities. Three USTs are used to provide fuel for UVA service and fleet vehicles. The pad- and pole-mounted transformers on campus are used to reduce electrical voltage from the power lines into the buildings that they serve. Only oil-containing transformers were included in this SPCC plan. Note that all transformers identified in this plan are located on the ground, and some are in vaults or small secured rooms. Only hydraulic elevators operating on campus that contain at least 55 gallons of hydraulic fluid are included in this SPCC plan.

Operations such as University Hospital operate 24 hours per day, 7 days per week. Academic buildings are open throughout the year, depending on their use, and when classes are in session. Most administrative buildings are open during normal business hours throughout the year. UVA operates a police and security force 24 hours a day seven days a week.

The maps in Appendix B cover the UVA campus and depict all tanks, generators, transformers, drum storage areas, and buildings where hydraulically operated elevators are found, that were evaluated for the SPCC plan.

UVA also operates several grease traps throughout campus, primarily associated with dining halls and snack bars. All grease traps are indoors, minimizing the possibility of a spill into a navigable waterway, and are maintained regularly.

6.2 Oil Storage Inventory [40 CFR 112.7(a)(3)(i)]

Tables C-1 through C-4 (Appendix C) summarize the oil storage inventory across UVA. As applicable, information provided in these tables include: location description, UVA ID number, map name, use, contents, capacity, and construction.
7.0 SPILL RESPONSE ACTIONS [40 CFR 112.7(a)(3)(iv)]

UVA has developed a program for spill response. This section details actions that UVA will follow after the discovery of a spill. These actions are distinct from the SPCC maintenance responsibilities discussed in other sections. All previous spills are documented in Appendix H.

7.1 General Response

As soon as a spill is discovered, the initial action should be to protect personal safety and prevent the pollutant from entering nearby drainage ditches or storm water drop inlets. The person observing the spill should take immediate action to prevent further spillage and to confine the spilled material. The general instructions to contain a spill are:

- If possible to do safely, stop the release. This includes shutting appropriate valves, securing pumps, and attempting to plug or cover punctures or gashes in pipes. It may be impossible to stop the spill if the situation creates a high degree of personal danger to the immediate responders.

- Notify a supervisor and the facility emergency coordinator.

- Warn other employees and onsite personnel of the spill by voice or using equipment such as two-way radios or telephones, if available.

- Contain the spill. Use absorbent materials, dirt, sand, or other relatively impervious material to dam up the spill and prevent further flow of the material from the spill area.

- Should spillage reach the drainage ditches or storm water drop inlets, use available means to minimize amount of substance flowing into the ditch or drain and contain the substance at the discharge point.
 - For oil or other floating materials, use hay, straw, or any boom arrangement to confine the spillage.
 - For soluble materials, use chemical absorbent, makeshift dams, or other means of confinement to prevent waterway contamination or the spread of further contamination.

- The person discovering the spill should not undertake burning or chemical treatment of the spill.
7.2 Internal Notification – Initial Response

The individual discovering a spill must notify his supervisor and Environmental Health and Safety or the FM Service Desk as soon as possible after completing initial spill-containment actions. Should the discoverer of the spill be unable to stop and/or contain the spill, or if the spill has entered stormwater conveyances or water courses, immediately notify Environmental Health and Safety or the FM Service Desk as shown in Table 3. Environmental Health and Safety or FM Service Desk staff are responsible for immediately notifying the SPCC Program Manager(s) of any spills. If warranted (e.g. after normal business hours, significant health/fire hazard), the Charlottesville Fire Department spill response team should be notified by calling 911.

Information to be provided in the notification includes:

- Location of spillage
- Type of material
- Estimated quantity and extent of spillage
- A brief description of measures that have been taken to confine the spilled material and prevent further spillage

Table 3. Internal Notification Personnel

<table>
<thead>
<tr>
<th>Title</th>
<th>Office Phone</th>
<th>24-Hour Emergency Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Health and Safety – Spill Response</td>
<td>(434) 982-4911</td>
<td>(434) 982-4865</td>
</tr>
<tr>
<td>SPCC Program Manager (Kristin Carter)</td>
<td>(434) 982-5034</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td>SPCC Alternate Program Manager (Jess Wenger)</td>
<td>(434) 982-5540</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td>Charlottesville Fire – (immediate endangerment to surface water or health)</td>
<td>911</td>
<td>911</td>
</tr>
</tbody>
</table>

The Environmental Health and Safety or the SPCC program manager should make any required notifications to appropriate local, state, and federal agencies, as described in Section 8 of this plan. However, if conditions require immediate notification and efforts to contact the above personnel are unsuccessful, the supervisor or other onsite personnel should make the appropriate oral notifications in Section 8.2 within 30 minutes following the spill’s discovery. UVA’s emergency spill cleanup contractor may also have to be notified (IMS Environmental Services 800- 883-4675).
7.3 Disposal of Spilled Materials [40 CFR 112.7 (a)(3)(v)]

After containment is achieved, the spilled materials and the containment materials will be removed and placed in appropriate containers for proper disposal in accordance with the procedures below. UVA is not equipped to perform remedial activities for large quantities of contained materials and has contracted with a private company to provide this service. If regulatory agency personnel are present to control the remedial activities, UVA personnel shall perform such actions as required by the regulatory agency. The procedures for the removal and disposal of small quantities of contained oil products are outlined below.
7.3.1 Safety Precautions

Spilled oil products, due to their inherent physical characteristics, must be assumed to be hazardous. As such, personnel must take appropriate measures to prevent accidental ignition or detonation of any waste materials during spill remedial activities. The most prominent threat arises from external ignition sources, such as open flames, sparks, etc. The following safety guidelines are to be strictly enforced to ensure that accidental ignition does not result:

- Smoking will be prohibited within 100 feet of the spill-impacted area. NO SMOKING signs shall be posted at the spill area.
- Ignition sources shall be prohibited in the spill area.
- Spark-producing equipment and tools shall be prohibited from use near spilled materials or oil-contaminated materials, unless specifically authorized by the SPCC program manager.
- The SPCC program manager shall inspect hand tools and mechanical devices to ensure that they have not become unsafe for use as designated either to the item or to the operator.
- Motor vehicles used to transport any waste fuels, oil-contaminated materials, or any other potentially hazardous material found at the spill site shall meet all applicable U.S. Department of Transportation safety standards.
- No operations shall be conducted during electrical storms.

7.3.2 Free Product (Oil, Diesel, or Gasoline)

- Free product is to be collected by experienced or trained personnel.
- Dispersing materials or methods must never be used unless specifically authorized by the regulatory personnel.
- Free product shall be collected using absorbent materials. The absorbent shall be applied until all free liquids are retained.
- Free product may be stored in waste collection containers (tank or drums) until pickup for removal from the site by the Environmental Health and Safety. Storage time onsite should be kept within regulatory limits.
Collected materials shall be transferred within areas equipped with secondary containment or in areas where temporary containment can prevent leaks or spills from escaping.

Used absorbent shall be collected with non-spark-producing tools and placed in drums or pails, which shall be sealed upon filling. All containers shall be labeled OIL WASTE - FLAMMABLE.

All containerized waste products shall be classified within the provisions of 40 CFR 261 and transported off-site within regulatory time constraints for reclamation/disposal at a treatment, storage and disposal facility licensed by the state.

Appropriate manifests, disposal documentation, and written reports shall be maintained onsite for at least three years.

7.3.3 Contaminated Soils, Absorbents, Etc.

Soils, absorbents, temporary dike materials, and other debris contaminated during the spill shall be collected with non-spark-producing tools and placed in drums or pails that must be sealed upon filling. All containers shall be labeled OIL WASTE - FLAMMABLE.

All containerized waste products shall be classified within the provisions of 40 CFR 261 and transported off-site within regulatory time constraints for reclamation/disposal at a treatment, storage and disposal facility licensed by the state.

Appropriate manifests, disposal documentation, and written reports shall be maintained onsite for at least three years.

Environmental Health and Safety and/or the SPCC Program Manager will supervise, direct, and make arrangements for the removal and disposal of recovered fuel and related petroleum-contaminated materials. Environmental Health and Safety has the ultimate responsibility for the disposal of chemical wastes from the university. This is always completed using a permitted/licensed contract hauler and disposal company.
8.0 EXTERNAL ALERT PROCEDURES

UVA will implement a spill notification program for external spill notification.

8.1 UVA Personnel

The Environmental Health and Safety or the FM Service Desk should be contacted in order to ensure timely notification to the SPCC Program Manager. The SPCC Program Manager should be notified immediately so that they can in turn notify appropriate local, state, and federal agencies within 30 minutes after discovery/initiation of the spill or spill response and notify any emergency response contractors. However, rapid communication is extremely important. If a spill enters (or has the potential for entering) “waters of the state,” the Virginia Department of Environmental Quality must be notified immediately. “Waters of the state” include surface and subsurface waters. **IN NO CASE** should spill notification exceed 30 minutes from the time of discovery.

These emergency personnel are listed below in Table 4:

<table>
<thead>
<tr>
<th>Title/Department</th>
<th>Office Phone</th>
<th>24-Hour Emergency Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Health and Safety</td>
<td>(434) 982-4911</td>
<td>(434) 982-4865</td>
</tr>
<tr>
<td>FM Service Desk</td>
<td>(434) 924-1777</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td>SPCC Program Manager</td>
<td>(434) 982-5034</td>
<td>(434) 924-1777</td>
</tr>
<tr>
<td></td>
<td>(434) 924-1777</td>
<td></td>
</tr>
</tbody>
</table>

8.2 Regulatory Notifications

The following agency notifications will be made by the Environmental Health and Safety or the SPCC program manager as required:

1. UVA/Local Protection Agencies

If danger to the public health or safety exists, immediately notify the following:

University of Virginia Police Department...911
City of Charlottesville Fire Department...911
2. Federal/State/Local Agencies

In the case of a discharge that threatens to escape UVA property, notify:

Local Emergency Services Coordinator…………………………………………………………911
Federal National Response Center/U.S. Coast Guard……………………………………… (800) 424-8802
Virginia Emergency Operations Center (24-hour hotline)……………………………. (800) 468-8892
VDEQ Valley Regional Office (during normal business hours)………………….. (540) 574-7800

3. In the event of a fire or health hazard, or response beyond the capability of UVA personnel, the emergency response coordinator will notify:

City of Charlottesville Fire Department………………………………………………………… 911

4. If leakage into the sanitary sewer or receiving waters is known to have happened, will happen, or is suspected, notify the following:

Rivanna Water and Sewer Authority (24 hour emergency number)…………………. (434) 295-2306
Charlottesville Water and Sewer (24 hour emergency number) ……………………. (434) 970-3820
Albemarle County Service Authority (24 hour emergency number)………………….. (434) 977-4511

Outside Emergency Response Cleanup Contractor
IMS Environmental Services, Inc. (24-hour emergency number)………………….. (800) 883-4675

8.3 Notification of Release Content

The information to be relayed to the contacted agencies includes:

- Name of person reporting.
- Address or location of where spill occurred.
- Substance spilled.
- Estimated quantity.
- Time spill occurred.
- Person to contact and telephone number at UVA.
8.4 Written Reports to EPA and VA DEQ

All environmental oil spills that result in any of the following are considered reportable under U.S. EPA Regulations on Discharge of Oil (40 CFR Part 110):

- 1,000 gallons or more discharged in one spill event;
- 42 gallons or more discharged in two spill events each within a 12 month period;
- Violate applicable water quality standards; or
- Cause a film or sheen upon or discoloration of the surface of the water or adjoining shorelines or cause a sludge or emulsion to be deposited beneath the surface of the water or upon adjoining shorelines.

After oral notification to the various agencies and personnel, a written report must be issued containing pertinent details relating to the cause of spillage, corrective actions taken, final results of corrective actions, and proposed plans to prevent recurrence of the problem. The written report will be filed within 60 days by the SPCC program manager to the following:

- U.S. Environmental Protection Agency
 Regional Administrator, U.S. EPA Region III
 841 Chestnut Building
 Philadelphia, Pennsylvania 19107-4431

- Virginia Department of Environmental Quality
 Petroleum Compliance Advisor
 P.O. Box 3000
 Harrisonburg, Virginia 22801-9519

The report should include the following information:

- Name of area where spill occurred.
- Name of operator.
- Location of spill.
- Date and year of initial operation.
• Maximum oil and hazardous substance storage or handling capacity and normal daily throughput.
• Site description, including maps, flow diagrams, and topographic maps.
• A complete copy of the SPCC plan with any amendments.
• The cause(s) of the spill, including a failure analysis of the system or subsystem in which failure occurred. The failure analysis examines and explains the reason for the failure resulting in the spill. The analysis should be explicit, definitive, and specific. For instance, it would be inadequate to simply report that the cause of the spill was the failure of a storage tank. The failure analysis should detail the nature of failure that caused the spill.
• Corrective actions and/or countermeasures taken, including a description of additional training procedures, equipment repairs, and equipment replacement.
• Added preventive measures or countermeasures to reduce the possibility of recurrence.
• Additional comments regarding the SPCC plan and spill that may be required to clarify the report.

9.0 SPILL CONTROL EQUIPMENT

UVA has a program to manage spill control equipment. Spill control equipment is currently maintained at several locations including:
• Loading dock of the Special Materials Handling Facility on the west side of campus;
• Loading dock at the West Hospital Complex;
• Loading dock at the Main Hospital near O₂ tank;
• Main Heating Plant lower level chemical storage area;
• North Grounds Heating Plant;
• Parking and Transportation on Millmont Street;
• Facilities Management on Alderman Road (one next to gasoline fuel pumps, one next to Landscape fuel tank, one in front of Landscape building);
• Fontaine Research Park - Sheridan G. Snyder Building – Utility space next to generator;
• Chiller plant of John Paul Jones Arena;
• Transitional Care Hospital Loading Dock;
• Fontaine – Forestry Yard inside landscape storage area; and
• Next to Athletics diesel fuel tank at Perry Field.

The spill equipment consists of absorbent pads and rolls, booms, granular absorbent, and drain covers or other appropriate materials specific to the site, and are contained in plastic 55 gallon drums or other appropriated containers all labeled as “Oil Spill Response Equipment”. The spill response materials at the Special Materials Handling Facility are stored in a small shed located on the loading dock, labeled “Spill Kit Inside.”

10.0 DRAINAGE PATHWAY AND DISTANCE TO NAVIGABLE WATERS

Spills could result from overfilling during fuel loading/unloading, mechanical failures of attached valves or flanges, a rupture in a pipeline, or structural failures in the wall of a tank, transformer or drum itself.

If a structural failure occurred to a UST when full, most products from the tank would likely be lost into the surrounding soil and possibly groundwater. Although a release from a UST could impact a large area, it would not be expected to pose an immediate threat to local surface water since the tank is underground.

The maps in Appendix B present topography and the pathways for potential release of all tanks, transformers and drums on the UVA campus. In some cases, runoff migrates into storm water drop inlets that presumably lead into the same watershed as where the drop inlet is located. In other cases, runoff drains directly into creeks or ravines located throughout the hilly campus, or directly onto the grass or soil surrounding the oil storage container.

The three main watersheds associated with the campus are:
• Meadow Creek (northeast portion of UVA);
• Moore’s Creek (south and west portion of UVA); and
• Ivy Creek (northwest portion of UVA)
All three watersheds drain into the Rivanna River, which at its closest point is approximately two miles east of the UVA campus.

The maps in Appendix D include all Aboveground Storage Tanks, Day Storage Tanks and Underground Storage Tanks located at UVA. These site specific figures indicate surrounding surface condition, spill direction and secondary containment type, if applicable.

11.0 POTENTIAL SPILL PREDICTIONS, VOLUMES, RATES, AND CONTROL [40 CFR 112.7(b)]

Tables E-1 through E-5 (Appendix E) summarize potential types of equipment failure for oil storage structures across UVA. As applicable, information provided in these tables include: oil storage container location, UVA ID number, map ID number, type of failure, spill direction, release rate, surface receptor, containment, and spill/overfill protection. Note that type of potential failure and release rate information are based on a worst-case scenario. For ASTs, generator tanks, or transformers, the worst-case scenario represents a catastrophic failure such as “tank rupture” leading to a subsequent surface spill. However, for USTs, the worst-case scenario is based on spills or overfills of 3,000 to 8,500 gallons. This estimate is based on the fact that the USTs at UVA are filled by fuel trucks of these volumes.

Additionally, the maps located in Appendix B show the potential flow direction via topographic relief of a spill from each oil storage container if secondary containment or spill response procedures are insufficient to mitigate the release. In some instances, an estimate of flow direction is not applicable because the oil storage container is located in a 15 to 25 foot deep concrete pit that can readily contain all the oil. The type and approximate capacity of any secondary containment structures are also noted in the tables.

12.0 DRAINAGE CONTROL DIVERSIONARY STRUCTURES AND CONTAINMENT [40 CFR 112.7(e)]

All areas in which oil is stored are either equipped with appropriate containment and/or diversionary structures to prevent discharged oil from reaching a navigable watercourse or have spill response procedures in place. Tables E-1 through E-5 in Appendix E lists, as applicable,
include the secondary containment type for each tank, transformer or drum throughout UVA.

Acceptable means of secondary containment include:

- Dikes, berms, retaining walls, and secondary tank containment
- Curbing
- Culverting, gutters, or other drainage systems
- Weirs, booms, or other barriers
- Spill diversion ponds
- Retention ponds
- Sorbent materials

In the event that spill response is required, spill kits in plastic salvage drums with spill control equipment can be found at the locations previously listed in section 9.0.

13.0 IMPRACTICALITY OF SECONDARY CONTAINMENT [40 CFR 112.7(d)]

UVA will use secondary containment, spill response, and sorbent materials as its primary means of containment. All practical methods of secondary containment will be considered. The University of Virginia has made the written commitment of manpower, equipment, and materials to expeditiously control and remove any oil discharged. All bulk storage ASTs (those 55 gallons or greater in volume) currently have adequate secondary containment.
14.0 INSPECTIONS/RECORDKEEPING [40 CFR112.7 (e)]

UVA has developed an inspection program in accordance with written procedures for the SPCC plan. Records of these inspections and tests will be documented, signed by appropriate personnel, and kept on file for at least three years. Sample inspection checklists are included in Appendix G. Section 21.6 provides more detail on specific inspection and testing requirements. Table 5 details the inspection schedule requirements for the different types and sizes of containers at UVa.

<table>
<thead>
<tr>
<th>Type of Tank</th>
<th>Monthly Inspections Required</th>
<th>Annual Inspections Required</th>
<th>Annual Tightness Tests</th>
<th>Cathodic Test Every 3 Years</th>
<th>Integrity testing every 20 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AST’s Integral with Generators ≤ 54 gallons</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2. AST’s Integral with Generators ≥ 55 gallons</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes for tanks >5000 gallons</td>
</tr>
<tr>
<td>3. AST’s Stand-Alone < 660 gallons</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4. AST’s Stand-Alone ≥ 660 gallons</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes for tanks >5,000 gallons</td>
</tr>
<tr>
<td>5. Drums < 55 gallons</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6. UST’s Single Walled</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 5. Inspection Schedule For Oil Containers at UVA

<table>
<thead>
<tr>
<th>Type of Tank</th>
<th>Monthly Inspections Required</th>
<th>Annual Inspections Required</th>
<th>Annual Tightness Tests</th>
<th>Cathodic Test Every 3 Years</th>
<th>Integrity testing every 20 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. UST (STI-P3) (Parking & Transportation U0583-1)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>8. UST’s Double Walled (ACT 100U or equivalent)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>9. Transformers Silicone, Dry, or ≤ 54 gallons</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>10. Transformers Containing oil and ≥ 55 gallons</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>11. Hydraulically Operated Elevators ≥ 55 gallons</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

15.1 PERSONNEL TRAINING AND SPILL PREVENTION PROCEDURES [40 CFR 112.7(f)]

This section details all training requirements stipulated in the SPCC regulations.

15.2 Personnel Instructions [40 CFR 112.7(f)(1)]

UVA recognizes that it is their responsibility to train all UVA personnel in the operation and maintenance of equipment to prevent discharges of oil and to ensure compliance with all applicable pollution control laws and regulations. Facilities Management and Environmental Health and Safety at UVA will provide adequate annual training in implementing the SPCC plan and related requirements. Pursuant with Virginia Administrative Code 9VAC25-580-125, UVA will ensure Class A, B, and C UST operator training is provided to appropriate personnel. Training records are maintained by Facilities Management or at Environmental Health and Safety.
15.3 Designation of Responsibility [40 CFR 112.7 (f)(2)]

This section presents UVA’s management structure and responsibilities for maintaining the SPCC plan, starting with the SPCC program manager. The SPCC program manager is responsible for overall SPCC implementation and maintenance. The SPCC program manager will have the authority to designate a person at each facility who is accountable for discharge prevention.

Designated personnel will be required to report the results of inspections, training, or other assignments to the SPCC program manager. Specific SPCC management tasks are included as a cross reference checklist in Appendix F. The organizational structure to be used by UVA is described below.

15.3.1 SPCC Program Manager or Alternate SPCC Program Manager

The SPCC program manager has responsibility for implementing and maintaining the SPCC plan. The program manager, as designated, the alternate program manager are responsible for ensuring the listed responsibilities are completed. In the absence of the SPCC program manager, the alternate SPCC program manager assumes all duties and responsibilities. Other appropriate staff may be designated to complete any of the listed responsibilities. The program manager's specific responsibilities include:

- Ensuring the implementation of the SPCC plan, including all applicable procedures and training requirements. Amending the SPCC plan depending on whether any change in oil containing equipment materially affects the potential for UVA to discharge oil into the environment. Before amending, the program manager should review all plans and drawings related to oil product storage, handling, or transfer for new construction, maintenance, or refurbishment to determine if an amendment to the SPCC plan is required.

- Coordinating with the various areas to develop safety, security, and inspection logs for the material and equipment under each area’s oversight as required in 40 CFR 112.

- Coordinating inspections at least once every five years to determine if plan modifications are required to maintain compliance with SPCC guidelines and obtaining a re-evaluation
and re-certification of the SPCC Plan by a registered professional engineer every five years if plan modifications are required.

- Identifying the number and types of personnel who require training, and coordinating the necessary training. Only personnel who deal with oil products as part of their normal job functions will require training. New employees who meet these criteria should be trained within six months from the date of employment. Training will include oil management procedures, spill recognition, reporting, and containment/cleanup. Training will comply with 40 CFR 112.7(f) requirements.

- Performing inspections at least annually to ensure spill kits are stocked

- Reminding appropriate area personnel of applicable inspection, maintenance, and recordkeeping requirements for oil-containing equipment used in their specific area. These requirements include:
 - Inspecting all tanks, transformers, piping, secondary containment structures, etc. and keeping inspection logs.
 - Reporting on, developing, and initiating an action plan and schedule for correcting deficiencies identified during inspections.
 - Reporting the results of all inspections and corrective actions to the SPCC program manager on a regular basis and consulting with the program manager where necessary.
 - Informing the SPCC program manager of the need to restock spill kits after use.
 - Notifying the SPCC program manager of any modifications, additions, or removals of tanks, transformers, or drums on a regular basis.

15.3.2 Environmental Health and Safety

- Provide spill response capabilities utilizing OSHA trained staff (This is mainly normal working hours function)

- Coordinate the disposal of petroleum contaminated materials and collected petroleum

- Coordinate spill response, regulatory notifications, and site cleanup with SPCC Program Manager

- Maintain training and training records for EHS response staff

- Maintain an adequate supply of response equipment including absorbents for both wet and dry conditions, booms, and other response tools.
15.3.3 UVA Employees

UVA has numerous employees who have defined responsibilities for ensuring compliance with the SPCC plan as part of the job function. These individuals are responsible for the normal housekeeping and day-to-day operations of the tanks, transformers, and drums under their area’s control. In addition employees who have duties related to the inspection, maintenance, and spill response for USTs under 9VAC25-580-125 shall receive Class A, B, or C UST operator training as required. Specific responsibilities include:

- Ensuring that all valves on oil containing devices are properly closed so as not to allow any release of oil.
- Ensuring that secondary containment structures are in good condition and are functioning properly so as not to allow any release of oil.
- Properly responding to, cleaning up, and disposing of small spills so as to make sure that all oil is cleaned up.
- Verifying on a regular basis that tanks, transformers and drums, particularly large capacity USTs and ASTs, are not leaking.
- Notifying the maintenance coordinator or SPCC program manager of any unauthorized access to oil storage devices or acts of vandalism to these items.
- Undertaking applicable inspection, maintenance, reporting, and recordkeeping requirements for oil-containing equipment used in their specific area as described in 15.3.1.

15.4 Spill Prevention Briefings [40 CFR 112.7(f)(3)]

SPCC briefings will be performed at an interval sufficient to ensure adequate understanding of the SPCC plan. Spill events or failures, malfunctioning components, and recently developed procedures will be addressed as part of these briefings. These briefings may be undertaken as part of compliance requirements for Class C UST operator training and may be provided by Class A UST operators at UVA.
16.0 SECURITY [40 CFR 112.7(g)]

This section pertains to security requirements on the UVA campus. UVA in general is a well-lit and secure campus, particularly those areas with high pedestrian or vehicular traffic. In addition, UVA maintains its own police force which regularly patrols the campus.

16.1 Fences and Locks [40 CFR 112.7(g)(1)]

Some ASTs, generators, and transformers are protected by chain-linked fences, depending on the risk posed by each piece of equipment. All fences will be locked when these devices are not being serviced. All transformers are locked.

16.2 Flow Valves Locked [40 CFR 112.7(g)(2)]

Flow valves that permit the direct outward flow of the tank’s content to the surface will be locked and in the closed position when in non-operating or standby status.

16.3 Starter Controls Locked [40 CFR 112.7(g)(3)]

Starter controls for all pumps will be locked and in the off position and only accessible to authorized personnel when not in use.

16.4 Pipeline Loading/Unloading Connections Securely Capped [40 CFR 112.7(g)(4)]

All fuel loading/unloading connections will be securely capped when not in service or standby service. Designated personnel who observe loading/unloading activities will verify that these connections are properly capped following each loading/unloading event.

16.5 Lighting Adequate to Detect Spills [40 CFR 112.7(g)(5)]

Most of the UVA campus is sufficiently lit to illuminate a release from a tank, transformer, drum, or hydraulically operated elevator. The UVA police department regularly patrols the campus for security purposes, particularly looking for acts of crime such as vandalism.
17.0 FACILITY TANK CAR LOADING/UNLOADING OPERATIONS

There are no loading racks at this facility; therefore 40 CFR 112.7 (h) does not apply. However, vendors perform oil transfers that are subject to the general containment requirements of 40 CFR 112.7 (c). This section pertains to management of the fuel vendors who supply oil to the UVA campus.

17.1 Tank Car and Truck Loading/Unloading Operations

UVA has requested through its contracts department that all transporters of oil to and from UVA will meet the minimum requirements and regulation established by the Department of Transportation. Vendor fuel loading/unloading procedures will comply with 49 CFR 172 and 49 CFR 177 Subpart B.

17.2 Adequate Containment for Vehicles

UVA has requested through its contracts department that its fuel delivery vendors develop an adequate program to respond to and contain any spills or other releases.

17.3 Warning or Barrier System for Vehicles

UVA has requested through its contracts department that its fuel delivery vendors develop a program for its fuel delivery drivers to prevent vehicular departure before complete disconnect of transfer lines.

17.4 Vehicles Examined for Lowermost Drainage Outlets before Leaving

UVA has requested through its contracts department that its fuel delivery vendors develop a program for its fuel delivery drivers to examine the lowermost drain and all outlets of the fuel delivery trucks. All outlets will be repaired if necessary.
18.0 FIELD CONSTRUCTED ASTS [40 CFR 112.7(i)]

UVA does not have any field constructed aboveground storage tank at this facility.

19.0 OTHER MORE STRINGENT PREVENTION STANDARDS [40 CFR 112.7(j)]

Motor fuel and emergency generator USTs are the only tanks at UVA that fall under more stringent requirements. These tanks are listed in this plan as required by 40 CFR 112; however, these tanks do not have to be included in the other aspects of this plan.

20.0 DRAINAGE CONTROL [40 CFR 112.8 (b)]

This section provides a complete discussion of conformance with the applicable drainage control requirements.

20.1 Drainage from Areas with Secondary Containment [40 CFR 112.8(b)(1)]

All secondary containment structures will be restrained by valves or another positive pressure means to prevent leakage of oil from the containment system. As part of this requirement, SPCC regulations require the inspection of rainfall that could collect in any secondary containment structure. Currently UVA does not have, nor anticipates installing, any secondary containment structures that are exposed to the atmosphere. However, in the event that a secondary containment structure is installed that is exposed to the atmosphere; UVA will develop procedures for inspecting and draining rainwater from these secondary containment structures. All rainwater will be observed for the presence of oil to ensure that none will be discharged into the water.

20.2 Drain Valves [40 CFR 112.8(b)(2)]

UVA does not have, nor anticipates installing, any drain valves on its secondary containment structures since none will be exposed to the atmosphere. However, any possible future secondary containment structure exposed to the atmosphere will not use flapper-type drain
valves to drain diked areas. All valves will be, as far as practical, of manual and open and closed design.

20.3 Undiked Area Drainage [40 CFR 112.8(b)(3)]

UVA does not have, nor anticipates having, any drainage from undiked areas. However, any possible future drainage from undiked areas will, if possible, flow into ponds, lagoons, or catchment basins designed to retain oil and return it to the facility. The locations of these catchment basins will not be subject to frequent flooding.

20.4 Final Discharge and Treatment [40 CFR 112.8(b)(4 and 5)]

These two requirements are not applicable to UVA since all secondary containment can be engineered in accordance with the requirements in Sections 20.1 through 20.3.

21.0 BULK STORAGE CONTAINERS [40 CFR 112.8(c)]

This section pertains to bulk storage containers, which are generally defined as ASTs or other appropriate containers having at least 55 gallons of oil storage capacity.

21.1 Tank Compatibility with its Contents [40 CFR 112.8(c)(1)]

All tanks in which oil is stored are constructed of steel, fiberglass, or a composite of the two and are compatible with the materials they store.

21.2 Secondary Containment for Bulk Storage Tanks [40 CFR 112.8(c)(2)]

According to SPCC regulations, secondary containment must be in place for all bulk storage containers. UVA will continue to use secondary containment (i.e. dikes or berms) for all bulk storage containers with capacities of 55 gallons or more.

All ASTs at UVA have secondary containment. In a few locations, the tanks, drums, or containers are located in interior structures that will serve as secondary containment as all have concrete floors with no storm drains in the immediate vicinity. Drums of petroleum products are
always stored either inside or at least under cover from weather. In locations where a release to the environment could occur, the drums are stored on containment pallets. Drums are also used to store used cooking oils and grease at various kitchens around campus. In these cases, the drums are kept on a containment pallet until the contract waste recycler comes and picks them up. New or recycled empty drums are then left in their place by the waste hauler.

Tables E-1, E-3, E-4, and E-5 in Appendix E list all ASTs and secondary containment currently in place. The locations of all ASTs, transformers, drums, and generator internal tanks and day tanks are shown on Figures B-1 through B-5 of Appendix B.

21.3 Drainage of Rainwater [40 CFR 112.8(c)(3)]

UVA does not drain untreated rainwater from diked areas since all secondary containment structures, including those planned for future construction, are totally enclosed.

21.4 Corrosion Protection of Buried Metallic Storage Tanks [40 CFR 112.8(c)(4)]

The structural materials for all USTs are listed in Table C-2 of Appendix C. Corrosion protection will not be installed on any existing non-regulated UST and piping. Regulated USTs fall under the jurisdiction of the State of Virginia UST program and are subject to those design and monitoring requirements. All regulated USTs at UVA have been upgraded to those State standards. All future USTs and piping installed at UVA will be constructed of non-corrodible material or have a cathodic protection system installed at the time of installation. Double wall installations will be the preferred design for piping and tanks.

All UST’s will be inspected annually according to the UVA Annual Checklist which can be found in Appendix G. UVA will conduct annual tightness testing on all non-regulated single wall UST systems (both metallic and non-metallic) and will document the results of these tests. These tests will help determine if any of these USTs have a small leak (≤ 0.05 gph) that could only be detected through tightness testing. Buried single-wall UST and AST piping, which is part of the tank system, will also be subject to these annual tightness tests. Double wall USTs,
will be subject to an annual check of the interstitial space for the presence of fluid. The presence of fluid in the interstitial space will be investigated to determine the source and appropriate actions and notifications will be made to correct the situation.

21.5 Corrosion Protection of Partially Buried Metallic Tanks [40 CFR 112.8(c)(5)]

Because no partially buried metallic tanks are present at UVA, this section is not applicable.

21.6 Aboveground Tank Periodic Integrity Testing and Periodic Inspections [40 CFR 112.8(c)(6)]

There are inspection checklists in place for preventive maintenance of all fuel tanks. All aboveground tanks (heating fuel oil tanks, diesel tanks, waste oil tanks, generator internal and day tanks) included in this SPCC plan will be inspected monthly. The inspection checklists (Appendix G) will provide details such as inspections of tank seams/gaskets; fill pipes, and tank supports and foundations. As part of the routine monthly inspection, the interstitial space will be checked for the presence of fluid. The exterior of the tanks will be examined for the presence of corrosion or other signs of deterioration. Transformers will be inspected twice a year. The inspections will be documented and the records maintained for at least 3 years. Records of inspections will be kept by the SPCC Coordinator for that particular division of UVA.

UVA inspection personnel will notify the SPCC maintenance coordinator of each area any time leaks, spills, overfills or signs of deterioration are observed. UVA personnel will undertake all appropriate action to repair a tank, effectively respond to and clean up any spills or leaks, and properly dispose of water detected in a tank.

Per the SPCC Amendments of December 2008, an owner must adopt integrity testing requirements as outlined in industry standards for all ASTs. At this facility, most ASTs have capacities below 5,000 gallons. According to the Steel Tank Institute’s (STI) Standard for the Inspection of Aboveground Storage Tanks (SP001, July 2006), periodic visual inspections as described above are sufficient for the shop manufactured tanks with capacities less than 5,000
gallons. Likewise, periodic visual inspections alone are recommended for drums. Formal external inspections, internal inspections, and leak testing are not included in the recommended testing schedule for small double-walled tanks or drums and therefore are not conducted at this facility. UVA also maintains six (6) ASTs that have capacities ranging from 5,580 gallons to 8,350 gallons (See Table 6). Under STI standards, these tanks must undergo a more rigorous formal non-destructive external inspection at least once every 20 years by a trained and STI or API certified inspector. UVA will arrange for a certified inspector to conduct these inspections.

<table>
<thead>
<tr>
<th>Tank ID</th>
<th>Tank Name</th>
<th>Tank Size</th>
<th>Tank Use</th>
<th>Integral With Generator</th>
<th>Installed Date</th>
<th>Inspection Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0599-1</td>
<td>ITC Data Center Generator</td>
<td>8350</td>
<td>Generator</td>
<td>Yes</td>
<td>03-Sep-10</td>
<td>03-Sep-2030</td>
</tr>
<tr>
<td>A1142-2</td>
<td>Jordan Hall 2000 kW generator</td>
<td>5880</td>
<td>Generator</td>
<td>Yes</td>
<td>01-Nov-10</td>
<td>01-Nov-2030</td>
</tr>
<tr>
<td>A1149-2</td>
<td>South Chiller - 11th Street Garage</td>
<td>6490</td>
<td>Generator</td>
<td>Yes</td>
<td>19-Apr-11</td>
<td>19-Apr-2031</td>
</tr>
<tr>
<td>A1149-3</td>
<td>South Chiller - 11th Street Garage</td>
<td>6490</td>
<td>Generator</td>
<td>Yes</td>
<td>19-Apr-11</td>
<td>19-Apr-2031</td>
</tr>
<tr>
<td>A1760-1</td>
<td>Sheridan G. Snyder Building</td>
<td>6480</td>
<td>Generator</td>
<td>Yes</td>
<td>15-Dec-07</td>
<td>15-Dec-2027</td>
</tr>
<tr>
<td>A3714-1</td>
<td>UVA Transitional Care Hospital</td>
<td>8000</td>
<td>Generator</td>
<td>No</td>
<td>01-May-10</td>
<td>01-May-2030</td>
</tr>
</tbody>
</table>

21.7 Control of Leakage through Internal Heating Coils [40 CFR 112.8(c)(7)]

UVA does not have any internally heated tanks.
21.8 Tank Installation Fail-Safe Engineered [40 CFR 112.8(c)(8)]

All USTs subject to federal and state spill and overfill regulations at UVA have spill and overfill systems in place. Newly installed ASTs also have spill and overfill protections installed. Existing heating oil USTs, which are not subject to these regulations, do not have spill/overfill protection. These tanks will be eventually closed or replaced with compliant tanks. Automatic shutoff devices, high level alarms, fuel level gauges at the tank are effective in achieving the overfill requirements. The specific type of protection for each tank will be tested per manufacturer requirements. Spill prevention can be achieved through the use of spill buckets or other similar containment devices installed at the fill port.

21.9 Observation of Disposal for Effluent Discharge [40 CFR 112.8(c)(9)]

Since UVA does not have any permitted effluent discharges, this section is not applicable.

21.10 Visible Oil Leaks Corrected [40 CFR 112.8(c)(10)]

As part of UVA’s inspection program, any visible oil leaks from seams, gaskets, rivets, and bolts will be promptly corrected.

21.11 Appropriate Position of Mobile or Portable Oil Storage Tanks [40 CFR 112.8(c)(11)]

UVA owns one small portable oil storage tank that is used to fuel portable and earthmoving equipment and three portable generators with fuel tanks greater than 55 gallons, all double-walled. Routine inspections are performed on these units. If any other portable tanks are added to the system, they will meet the above criteria.

22.0 FACILITY TRANSFER OPERATIONS [40 CFR 112.8(d)]

This section pertains to the maintenance and management of all oil piping.

22.1 Buried Piping Cathodic Protection and Examination [40 CFR 112.8(d)(1)]
UVA has conducted a survey to verify that all buried AST and UST piping that operates under pressure is made of non-corrodible material. Piping that does not meet the non-corrodible classification will be replaced when the system is replaced or upgraded. Tightness testing of these corrosive product lines will be conducted annually.

22.2 Not-In-Service and Standby Service Terminal Connections [40 CFR 112.8(d)(2)]

Pipelines that are out of service or on standby service for an extended period of time will be plugged and marked as such.

22.3 Pipe Supports Design [40 CFR 112.8(d)(3)]

Pipe supports are designed to minimize abrasion and corrosion, and to allow for expansion and contraction.

22.4 Aboveground Valve and Pipeline Examination [40 CFR 112.8(d)(4)]

UVA will conduct an above-ground piping inspection as part of its periodic visual inspections (Appendix G), paying particular attention to piping joints, valves, supports, valves, and metal surfaces. Piping whose rupture may lead to a serious spill event may be periodically pressure tested.

22.5 Aboveground Piping Vehicular Traffic Protection [40 CFR 112.8(d)(5)]

All above-ground piping in traffic areas is protected from vehicular traffic by concrete or steel posts. Vent pipes are typically situated next to buildings and fences to avoid traffic interference.

23. OIL PRODUCTION FACILITIES [40 CFR 112.9]

UVA does not own or operate an oil production facility therefore this section is not applicable.

24. ON SHORE OIL DRILLING FACILITIES [40 CFR 112.10]
UVA does not own or operate an on-shore oil drilling facility therefore this section is not applicable.

25. OFF SHORE OIL DRILLING FACILITIES [40 CFR 112.11]
UVA does not own or operate an off-shore oil production facility therefore this section is not applicable.

26. SPCC REQUIREMENTS FOR ANIMAL AND VEGETABLE FATS AND OILS [40 CFR 112.12]

UVA typically stores used cooking related oils, greases, and fats in 55-gallon drums at eight dining halls/restaurants around the campus. The drums are kept on secondary containment pallets until they are picked up by the recycler. These containers will meet the requirement of the SPCC regulations and will be listed in the inventory records.